京公网安备 11010802034615号
经营许可证编号:京B2-20210330
写在大数据变革之前
目前,最活跃的领域是网络终端创新和网络基础设施创新,也就是所谓的大数据产业链的前台和后台。从人们所熟知的台式机,笔记本到智能手机和平板电脑,再到即将问世的网络电视,网络相机,网络眼镜,还有研讨中的网络灯泡,自行汽车和各种各样匪夷所思的网络终端和传感系统,将物质世界和人类社会越来越全面,越来越深入地转化进数据世界的工作正在顺利迅速地进行,好像看不到什么了不起的理论或实践上的障碍能够阻止这一进程。
从人们所熟悉的传统云计算和数据中心到今天的公有云,私有云,开放云,封闭云,再到层出不穷的集硬件,软件,数据存储和分析工具于一身的基础设施,大数据的后台正在从软件即服务(SaaS),平台即服务(PaaS)走向基础设施即服务(IaaS)。在这条路上,好像也看不到什么了不起的理论或实践上的障碍能够阻止这一进程。
真正的决战还是在大数据的中台也就是网络平台方面,这方面的大创新才是大数据时代真正到来的引爆点(Tipping
Point)。无论前台如何丰富多彩,无论后台如何强壮有力,毕竟还需要有一个体系,一个架构,一个服务把人与人,物与物,人与物之间产生的数据按自然逻辑和社会逻辑联系起来,对接上去,集成到一起,才能够释放潜在的经济和社会价值。这种联系,对接和集成的方式用户越喜欢,成本越低,效率越高,数据越多,这个平台的价值就越大,在大数据生态圈里的地位就越高。就现有的网络平台看,还没有一个有足够的能力或潜力完成这一任务,整个产业需要一个或几个大的创新。
就目前产业发展的状况和大数据时代的内在需要看,未来三五年内会在网络平台层面上有机会产生创新性突破的不外乎以下三大方向:
个人数据集成----这是WEB2.0革命的自然深化和扩展,终极目的是创造真正的“数据人”,也就是以个人为中心,将其在互联网上的言行举止和世上一切有关此人的所产生的数据汇集起来精准描述,在保护隐私的前提下进行智能化和个性化的服务匹配。在这方面,FACEBOOK和苹果的基础最好,走的最远。“我的数据”(My
Data),“自我量化”(Quantified
Self),“纳米定位”(Nanotargeting)等一系列新概念正在业内出现,一批围绕个人完整动态数据获取的服务和机制正在尝试之中。
公共服务数据集成----过去远远落后于时代发展的网络公共数据服务近年来异军突起,从零散,滞后,粗略和被动的状态开始迅速走向集成,动态,精细和主动的新阶段。以DATA.GOV为代表的政府数据服务网站在立法,预算,舆论监督和民众督促等力量的推动下,正在成为大数据时代一股崭新而强大的力量,扩展和充实着互联网服务的空间和深度。一个国家,一个社会乃至一个城市的发展水平和竞争实力将和自身的公共服务数据集成和服务的水平紧密相连。公共服务数据集成水平的高低很快将成为“软实力”的主要标志之一。
物质生产数据集成----物质产品的设计和制造一直远离互联网,而现在正以极高的速度和极大的力量与网络业相融合。以“3D打印”这个不甚准确的名词所代表的网络化和数据化的物质产品设计和生产革命极大地提高了人们对网络世界和数据世界的想象力,极大地拓展了网络业的产业边界。过去,网络业只能进行完全数据化的产品和服务,或者通过网络平台帮助物质化的产品和服务进行推广销售。而新兴的网络化和数据化物质产品生产模式展现出由数据到实物的转化过程开始进入低成本,大规模,打破时空界限和个性化的全新历史阶段。这将重新定义众多产品制造业的产业链和商业模式,使物质产品的设计,制造和流通过程所需的数据集成成为产业上游。
这三个方向正好是一个由个人,社会和物质世界三维所组成的空间,这个空间在大数据时代有机地融合起来,为产业发展和社会进步创造机会。在这个空间中任何一维或三维上的任意一点的显著进步都将是大数据服务产业的福音。这不是空想的神话,而是看得见的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28