
本文总结推荐22个免费的数据可视化和分析工具。列表如下:
数据清理(Data cleaning)
当你分析和可视化数据前,常需要“清理”工作。比如一些输入性列表“New York City" ,同时其他人会说"New York, NY" 。因此你需要标准化这些工作,使看到统一的样式。下面的两个工具被用来帮助使数据处于最佳的状态。
1、DataWrangler
斯坦福大学可视化组(SUVG)设计的基于web的服务,以你刚来清理和重列数据。点击一个行或列,DataWrangler 会弹出建议变化。比如如果你点击了一个空行,一些建议弹出,删除或删除空行的提示。它的文本编辑很cooool。
2、Google Refine
Google Refine。用户在电脑上运行这个应用程序后就可以通过浏览器访问之。这个东西的主要功能是帮用户整理数据,接下来的演示视频效果非常好:用户下载了一 个 CSV 文件,但是同一个栏中的同一个属性有多种写法:全称,缩写,后面加了空格的,单数复数格式不一的。。。但是这些其实都代表了同一个属性,Google Refine 的作用就是帮你把这些不规范的写法迅速统一起来。
有时,你需要你的数据的图形化的表达。
3、R 项目
R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软体,但也有人用作矩阵计算。其分析速度可比美GNU Octave甚至商业软件MATLAB。
这些工具提供了不同的可视化选项,针对不同的应用场景。
4、Google Fusion Tables
Google Fusion Tables 被认为是云计算数据库的雏形。还能够方便合作者在同一个服务器上分享备份,email和上传数据,快速同步不同版本数据,Fusion Tables可以上传100MB的表格文件,同时支持CSV和XLS格式,当然也可以把Google Docs里的表格导入进来使用。对于大规模的数据,可以用Google Fusion Tables创造过滤器来显示你关心的数据,处理完毕后可以导出为csv文件。 更多请到:CDA数据分析师官网
Google Fusion Tables的处理大数据量的强大能力,以及能够自由添加不同的空间视图的功能,也许会让 Oracle,IBM, Microsoft传统数据库厂商感到担心,Google未来会强力介入数据库市场。
5、Impure
Impure,允许点击、拖曳来连接模块,由西班牙分析公司Bestiario 创建。
6、Tableau Public
7、Many Eyes
8、VIDI
9、Zoho Reports
10、Choosel
11、Exhibit
12、Google Chart Tools
13、JavaScript InfoVis Toolkit
14、Protovis
15、Quantum GIS (QGIS)
16、OpenHeatMap
17、OpenLayers
18、OpenStreetMap
19、TimeFlow
20、IBM Word-Cloud Generator
21、Gephi
22、NodeXL
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10