
大数据时代网络安全进入产业爆发期
2017年中国云市场竞争中,“1分中标”、“1元中标”案例已经不新鲜,在竞争白热化的云计算市场中,第一部网络安全相关法律的出台,再次搅动业界神经,安全成为各大云服务厂商标榜的核心竞争力。以近日菜鸟和顺丰的争议为例,数据安全、云市场争夺都被成为各执一词的缘由。
21世纪经济报道记者近日采访包括阿里云在内的云服务公司以及网络安全领域的创业者和专家,解读云服务市场的安全竞争。其中阿里云总裁胡晓明一一回应跟阿里云相关的竞争和安全问题。他表示,“根本不存在(阿里云)与腾讯云争夺顺丰一事,另外如果阿里云做侵犯用户隐私的事情,那应该倒闭。”
阿里云回应“不安全”
6月1日,《网络安全法》实施第一天,顺丰和菜鸟陷入数据之争,在数据资源方面互不让步,双方皆以保护用户数据隐私安全的名义指责对方。卷入这场“罗生门”的,还有顺丰和菜鸟各执一词的“云市场”争夺,即腾讯云和阿里云的的云服务市场竞争。
在这场风波中,关于安全的讨论争议也很多。
近日,胡晓明在上海接受21世纪经济报道记者采访时回应菜鸟顺丰之争。“顺丰早就是我们的客户了,我也没有提要跟顺丰进一步加大云计算的合作,我们都没有找过对方。”胡晓明说。
他表示,一方面不存在与腾讯云争夺顺丰一事,另外一方面从技术角度也不可能实现通过用户IP地址获取用户核心数据的可能。
在接受采访的一个小时时间里,胡晓明约有一半时间在谈安全、回应与安全相关的质疑。据介绍,阿里云平台上承载了大概37%的中国网站业务,阿里云平均每天承受的攻击是16亿次。
据胡晓明介绍,阿里云有严格的内部审计制度。阿里云工程师进行任何运维管理操作时,都会有内部审计和实时违规预警。所有工程师都需要双因素认证来完成操作人的身份验证。此外,还通过定期的安全扫描和模拟渗透,来确保数据安全的内部控制有效、完整性。
“为什么我们今天特别欢迎网络安全法的正式实施?就像交通法规定的红绿灯一样,交通规则越严格越好。”阿里云的另一位负责人补充说,这个也是整个云计算产业发展的前提。
网络安全产业爆发期
从5月份的勒索病毒事件,再到6月的菜鸟顺丰事件,叠加《网络安全法》的落地,网络安全的概念被热炒到了新高度。
法律对于网络运营者的管理责任作了较为明确的规定,《网络安全法》规定了网络安全等级保护制度,而网络运营者则应根据网络安全等级保护制度的要求,履行安全保护义务,保障网络免受干扰、破坏或入侵,防止数据泄露或被窃取或篡改。
6月13日,21世纪经济报道记者在2017中国网络安全大会采访十余家参会网络安全公司,其中瑞星安全的一位负责人告诉21世纪经济报道记者,近期咨询业务的客户明显增加,行业向好。
北京另一家做云安全服务的创业公司人士表示,国外的网络安全市场相对成熟,中国相当于刚刚做完基础设施建设,对安全的需求正处于爆发的上升期,产业也在爆发期。他们公司2015年创立,现在基本能做到盈亏平衡,比较难得。
据介绍,他们的客户主要是政府的政务云平台和金融机构,客户的安全意识还是比较强的,特别是《网络安全法》出台后,对一些网络数据管理运营平台担负的责任进一步清晰,大家也不得不重视起来。
某信息安全众包服务电商平台的CEO陈新龙表示,网络安全元年,应该从2017年《网络安全法》的实施开始。
根据国家互联网应急中心数据显示,2016年1月至11月,中国境内被篡改网站数量总数达到62894个,其中被篡改政府网站数量达到1483个。已收集到的信息系统安全漏洞达9756个,其中高危漏洞3764个,占比为38.6%。
又一份IDC 报告数据显示,截至 2014 年底,中国信息安全投资的比例依然不足 1%,和美国(3.6%)及日本(6%)等成熟市场差距明显,中国网络安全市场还有很大的释放空间。
陈新龙告诉21世纪经济报道记者,2017年他所创立的安全服务平台,新入驻的网络安全厂商增长迅速。
此前,工信部电子科学技术情报研究所总工程师尹丽波在接受21世纪经济报道记者采访时也表示,目前政府的意识很强,包括工信部和网信办,这些年都在对政府部门在做安全培训和检查,提升网络安全意识,普及网络安全技能和知识。在保护安全方面,大部分政府部门都已经行动起来。但企业这块还有很大的空间,特别是中小企业,信息化程度很低,更别说网络安全措施。所以海量的中小企业,可能会是将来网络安全产业的巨大目标群体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01