
SPSS科研统计:数据的排序、拆分与合并
通常在进行统计分析之前,可能要对数据文件进行基本的处理操作,让数据格式更加适合用于将要用到的统计分析方法。数据文件的基本操作主要包括数据的排序、数据的分组、数据的合并、数据的转置、对变量值的求秩、对变量的编码、计算新变量、数据的汇总与加权。整理数据文件的功能主要通过“数据”菜单和“转换”菜单来完成。
一、数据的排序
一般我们创建的数据文件在编辑窗口中个案的前后次序是随机的,其先后顺序由录入时决定。在做数据统计分析时,有时希望按某种顺序来观察一批数据,以便于更好地了解数据信息。例如:多城市儿童身高,希望身高是按从高到低的顺序观察。SPSS中的数据排序就是将数据编辑窗口中的数据,按照指定的某一个或多个变量值的升序或降序重新排列,所指定的变量称为排序变量。当排序变量只有一个时,为单值排序,则按照排序变量取值的大小次序对个案数据重新整理后显示。当排序变量有多个时,为多重排序。多重排序的第一个排序变量称为主排序变量,其他排序变量依次称为第二排序变量、第三排序变量等。在多重排序时,个案先按主排序变量值的大小排序,当主排序变量值一致时,再按第二排序变量值大小排序,依次类推。数据排序的主要操作方法如下:
单击“数据” |“排序个案”命令,弹出“排序个案“对话框,排序前数据如下图所示。将排序变量选定后,设置好排序方式,如排序个案图所示,单击“确定”按钮,会自动 跳转到排序后的数据编辑窗口。
(1) “排序依据”框是选择指定的排序变量,若排序变量有多个,将自动按照它们在此列表的显示次序,依次对数据进行排序。
二、数据的拆分
在进行统计分析时,只需要对具有某种特性的数据进行分析,那么就涉及到分组分析,则可以通过拆分数据集来加以实现,它能使数据分析过程按照分组变量进行分组分析,得到各个组的结果。通过拆分功能,还可以实现对原始数据的重新排序,使某一变量取值相同的个案集中在一起,便于观察和比较。具体的操作方法如下:
单击“数据”丨“拆分文件”命令,弹出“分割文件”对话框
(1) “分组方式”框用于选择拆分的变量,此变量可以是一种及以上。
(2) 指定拆分方式。
分析所有个案,不创建组:是系统的默认值,表示分析所有的个案,取消拆分,它可恢复分组前的状态;
比较组:分组分析,按组间比较的形式输出结果;
按组组织输出:分组分析,分别显示各组所得的结果。
(3) 指定排序方式。
按分组变量排序文件:拆分时将数据按所用的拆分变量排序,这是系统默认选项;
文件已排序:标识数据己经按分组变量排序了,不需要重新排序。
拆分前数据
数据拆分的参数设置
选中拆分变量后,单击“确定”按钮,自动弹出拆分后的数据编辑窗口,如上图所示。右下侧会出现“拆分条件”的提示,表明所做的拆分正在生效,它将在以后的分析中一直有效,而且会被存储在数据集中,直到再次进行设定为止。数据进行拆分后,其分析结果的显示表格,如下图所示
拆分后收数据
三、数据的合并
当数据量很大时,经常需要将一份大的数据分成几个小部分,由不同的人对数据进行录入,以提高录入效率。这样就会出现一份大的数据分别存储在几个不同的数据文件中的现象。因此,将这些若干个小的数据文件合并成一个大的数据文件,是进行各种统计分析的前提。SPSS数据文件的合并方式有两种:纵向合并和横向合并。在SPSS系统中,进行合并的文件必须都存储为SPSS数据格式。
(1)纵向合并
纵向合并指的是几个数据集中的数据纵向相加,组成一个新的数据集,新数据集中的记录数是原来几个数据集中记录数的总和,实质就是将两个数据文件的变量列,按照各个变量名的含义,一一对应进行首尾连接合并。合并的两个数据文件的变量相同,合并的目的是增加分析个案。
实现SPSS数据文件的纵向合并应遵循两个条件:第一,两个待合并的SPSS数据文件,其内容合并是有实际意义的;第二,为方便SPSS数据文件的合并,在不同数据文件中,数据含义相同的列,最好起相同的名字,变量类型和变量长度也要尽量相同。这样,将方便SPSS对变量的自动对应和匹配。
(2)横向合并
横向合并指的是按照记录的次序,或者某个关键变量的数值,将不同数据集中的不同变量合并为一个数据集,新数据集中的变量数是所有原数据集中不重名变量的总和,实质就是将两个数据文件的记录,按照记录对应,一一进行左右对接。合并的两个数据文件的变量不同,但具有相同个案例数。
实现SPSS数据文件的横向合并应遵循三个条件,第一,如果不是按照记录号对应的规则进行合并,则两个数据文件必须至少有一个变量名相同的公共变量,这个变量是两个数据文件横向对应合并的依据,称为关键变量。如学号、贵宾卡号等,关键变量可以是多个;第二,如果是使用关键变量进行合并的,则两个数据文件都必须事先按关键变量进行升序排列;第三,为方便SPSS数据文件的合并,在不同数据文件中,数据含义不相同的列,变量名不应取相同的名称。数据合并的操作方法如下:单击“数据”丨“合并文件”丨“添加个案”命令,弹出添加个案文件选择对话框操作即可。
打开数据合并窗口。因是横向合并,所以选择“添加变量”。第二个图片显示合并的数据文件。
“已排除的变量”是两个文件中共同拥有的变量名,选择它作为“关键变量”。“新的活动数据集”是最后展示在结果中的变量名。变量名后的“*”表示当前数据编辑窗口中的量,“+”表示指定文件中的变量。“按照排序文件中的关键变量匹配个案”中通常选择第一个,即“两个文件都提供个案”。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07