京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS峰会引领大数据分析新浪潮_数据分析师
以“大数据分析—知变与机遇”为主题的第二届SAS中国用户大会暨商业分析领袖峰会在北京圆满落幕。近千位SAS全球大数据专家、SAS中国用户、合作伙伴、学者、媒体与行业分析师齐聚一堂,探讨大数据分析技术趋势与应用热点等话题,发掘大数据大分析的未来机遇。
此次峰会在SAS大中华区总裁吴辅世的致词中拉开帷幕。他表示:“大数据已然是目前主导商业领域的最热门发展趋势之一。在全球数据总量呈指数增长同时,我们也思考如何利用大数据带来的巨大机遇,创造实实在在的价值。SAS认为数据创造价值体现在三个层面:差异化、创新和转型。了解过去,掌握现在,预测未来,是达到业务差异化的基本,也是成就创新的源动力,更是真正达成转型的要点。而这三大目标的实现都离不开强劲的分析技术,高性能分析成为释放大价值的关键。今天,借助SAS论坛这一平台,我们将深入剖析大数据如何助力各行业企业成功转型及把握机遇。”
2014年,“大数据”作为一个技术热词的吸引力将消散,新的相关技术和应用层出不穷。分布式计算开源框架Hadoop成为创新热点之一。SAS大数据研究与发展全球副总裁Paul Kent在主题演讲中表示,随着数学计算正在不断向前发展,新一代的分析平台Hadoop等采用了海量并行集群技术。通过将数据分布到多个节点,然后将分析计算任务发送到这些数据上,而不是采用其它的传统技术,就可以快速拥有极为强大的计算能力。通过转变成这种新型的计算方式,可以在全量数据上展开交互式的可视化数据探索,同时轻松使用那些以前难以驾驭的先进分析模型。
互联网和移动设备支持的数字技术拓宽了营销渠道,重塑了整合营销。SAS全球整合营销管理业务咨询总监Rene van der Laan认为:“大数据的时代,企业得以采集渠道多样、类型丰富的客户数据,并据此判断顾客喜好。仅仅获取是不够的,还要对数据进行有效的挖掘和分析,并以近乎实时的速度做出决策。在细分群体基础上采取针对性行动,发掘客户新需求,进行个性化营销和业务创新,这都是大数据为整合营销带来的便利与新变化。”
此外,针对行业的讨论也是大会的一大重点。就电信业而言,4G时代网络数据和服务将呈现井喷式爆发。手机和平板电脑取代PC成为主流的互联网接入设备,带来了数据流量大幅度的增加,这给电信运营商带来了巨大的机遇和挑战。大会专题讨论着眼于刚刚启幕的4G时代,讨论如何对网络进行有效的预报和优化,为客户提供畅通的网络服务,并着眼于客户需求,提供定制化服务。
SAS全球保险行业解决方案资深顾问Stuart Rose指出,大数据时代,保险行业面临新机遇:更充足的数据为开展精准营销开辟新途径,也为精准定价提供了依据。风险智能更是大大提升保险业风险识别和反欺诈的能力。车载信息技术等新技术的出现,加快了保险企业对于大数据分析和云技术的应用。未来大数据分析在保险业的应用还将更为深入和广泛,保险企业对于数据的驾驭能力也将成为其核心竞争力之一。
SAS每年将营收的约25%投入到研发中,通过持续创新为数据分析的升级换代注入源源不断的动力。据IDC报告显示,全球越来越多的企业对SAS高级分析产品的依赖超过任何其他品牌。SAS在高级分析软件市场上的份额为36.2%,较2012年的35.3%进一步上升。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16