
大数据推动 内存革命_数据分析师
直言不讳的说,如今一谈到企业的数据分析战略就一定要提到大数据。大数据占据了媒体和公众的视线。并非说大数据不重要,实际上,目前大数据的潜力只被开发了微不足道的一点点。然而与此同时,企业的业务和技术高管决不应忽视在ERP、CRM等企业应用中已经存在的数据,因为这些数据也拥有令人难以置信的重要价值。现在数据分析师也遍布各个行业,CDA数据分析师官网培训的数据分析师也占了一部分。
企业在Oracle技术上做了大量投资以部署应用,而新数据也持续不断地以TB量级逐日增加。找到一种更快的、立即可用的方式,将所有数据提供给企业内部用户,使其能够实时分析数据,将会给企业带来巨大的优势。
试想一下,如今的企业专注于满足客户的需求,而客户则通过各种渠道接触到企业并与之产生互动。消费者正变得越来越没有耐心,因此企业需要立即对客户的问题给出答案。这意味着,以往的几小时几小时地等待批处理作业运行(现在仍有这样的情况发生)或者使用预制报告提供信息对如今的消费者来说是无法接受的。预制报告产生信息的速度很慢,且难以修改。现在的企业需要的是瞬时给出答案,快速建模,做出实时决策。
迄今为止,阻碍企业获得实时洞察力的主要障碍之一,就是数据怎样在数据库中格式化。交易系统用行格式可以实现最佳性能,而数据分析系统则用列格式最好,同时拥有两种系统的企业并非不常见,但在这些不同系统之间进行数据的移动和变换相当费力,常常是数据一就位就“停滞”了。
不久前,甲骨文公司在其位于美国加州红木城总部推出的最新Oracle Database In-Memory解决了这个问题,它在同一个系统中同时支持查询和交易。通过对双格式的支持,Oracle Database In-Memory可以同时在列中(以实现高速数据分析)和行中(以提供最佳交易性能)编排数据。两种格式同时处于活动状态,而且完全一致。
从几小时到几秒
众所周知,业务并不是总按计划进行。意外问题会突然出现,需要快速解决,与此同时,数据量也在持续不断地增长。当企业管理者需要基于相关数据以确定解决办法时,搜索数据有如大海捞针一般。
假定你是一位销售经理,通过几家运输公司向客户交付产品。如果这些运输公司中有一家突然发生了罢工,那么你的产品交付计划会受到哪些影响?为了找出这种意外事件对业务会造成怎样的影响,你必须搜索数10万行订单内容。
甲骨文设计了一个试验,在试验中用户需要在JD Edwards系统中搜索超过1.04亿行销售订单内容,以找到几个客户的信息。运用标准数据库设置,大约13分钟完成搜索。而采用Oracle Database In-Memory,不到1秒就得到了搜索结果。
在体育界有一句名言:伟大选手谈论的是如何比赛中创造时间和空间。Oracle Database In-Memory也是如此,它为企业更好地决策而创造时间与空间,针对最细节的业务问题也能即时给出答案。
让我们假设另一种情况:你在跟一个客户进行电话交谈,你需要总结一下不同地区及不同客户类别下的产品表现,进而给出一个有竞争力的报价。如果使用传统数据分析系统,从ERP系统抽取数据,进行模式分析,可能需要30分钟、1个小时甚至更长。而用Oracle Database In-Memory,你可以在通电话的同时立即在系统中查询,时间大大减少。
一次测试显示,总结4100万行发票内容大约需要4个小时。在对应用进行微调且用Oracle Database In-Memory再次进行试验后,只用4秒钟便能完成任务。
Oracle Database In-Memory可在现有Oracle数据库系统上运行,无需对应用进行任何修改。这意味着合同谈判、分析工资变化幅度等日常应用的性能都能得到提高,最终用户能够立即获得所需信息。企业现在运行报告、提出问题时,也不必担心系统性能低下了。这将有助于促进以数据为主导的实时决策,而这正是实现实时型企业的决定性因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15