
关于大数据分析的四个关键环节
随着大数据时代的到来,AI 概念的火热,人们的认知有所提高。为什么说大数据有价值 这是不是只是一个虚的概念 大家怎么考虑数据驱动问题 为什么掌握更多的数据就会更有效 这些问题很难回答,但是,大数据绝不是大而空洞的。
信息论之父香农曾表示,信息是用来消除不信任的东西,比如预测明天会不会下雨,如果知道了今天的天气、风速、云层、气压等信息,有助于得出更准确的结论。所以大数据是用来消除不确定性的,掌握更多的有效数据,可以驱动企业进行科学客观的决策。
桑文锋对大数据有着自己的理解,数据采集遵循“大”、“全”、“细”、“时”四字法则。
“大”强调宏观的“大”,而非物理的“大”。大数据不是一味追求数据量的“大”。比如每天各地级市的苹果价格数据统计只有 2MB,但基于此研发出一款苹果智能调度系统,就是一个大数据应用,而有些数据虽然很大,却价值有限;
“全”强调多种数据源。大数据采集讲求全量,而不是抽样。除了采集客户端数据,还需采集服务端日志、业务数据库,以及第三方服务等数据,全面覆盖,比如美国大选前的民意调查,希拉里有70%以上胜算,但是川普成为了美国总统,因为采样数据有偏差,支持川普的底层人民不会上网回复。
“细”强调多维度数据采集,即把事件的维度、属性、字段等都进行采集。如电商行业“加入购物车”的事件,除了采集用户的 click 数据,还应采集用户点击的是哪个商品、对应的商户等数据,方便后续交叉分析。
“时”强调数据的时效性。显然,具有时效性的数据才有参考价值。如国家指数,CPI 指数,月初收集到信息和月中拿到信息,价值显然不同,数据需要实时拿到,实时分析。
从另一个视角看待数据的价值,可以分为两点,数据驱动决策,数据驱动产品智能。数据的最大价值是产品智能,有了数据基础,再搭建好策略算法,去回灌产品,提升产品本身的学习能力,可以不断迭代。如今日头条的新闻推荐,百度搜索的搜索引擎优化,都是数据驱动产品智能的体现。
▌ 数据分析四个关键环节
桑文锋把数据分析分为四个环节,数据采集、数据建模、数据分析、指标。他提出了一个观点,要想做好数据分析,一定要有自底向上的理念。很多公司的数据分析自顶向下推动,用业务分析指标来决定收集什么数据,这是需求驱动工程师的模式,不利于公司长久的数据采集。而一个健康的自底向上模式,可以帮助公司真正建立符合自己业务的数据流和数据分析体系。
一、数据采集
想要真正做好大数据分析,首先要把数据基础建好,核心就是“全”和“细”。
搜集数据时不能只通过 APP 或客户端收集数据,服务器的数据、数据库数据都要同时收集打通,收集全量数据,而非抽样数据,同时还要记录相关维度,否则分析业务时可能会发现历史数据不够,所以不要在意数据量过大,磁盘存储的成本相比数据积累的价值,非常廉价。
常见的数据采集方式归结为三类,可视化/全埋点、代码埋点、数据导入工具。
第一种是可视化/全埋点,这种方式不需要工程师做太多配合,产品经理、运营经理想做分析直接在界面点选,系统把数据收集起来,比较灵活。但是也有不好的地方,有许多维度信息会丢失,数据不够精准。
第二种是代码埋点,代码埋点不特指前端埋点,后端服务器数据模块、日志,这些深层次的都可以代码埋点,比如电商行业中交易相关的数据可以在后端采集。代码埋点的优势是,数据更加准确,通过前端去采集数据,常会发现数据对不上,跟自己的实际后台数据差异非常大。可能有三个原因:第一个原因是本身统计口径不一样,一定出现丢失;第二点是流量过大,导致数据丢失异常;第三点是SDK兼容,某些客户的某些设备数据发不出去,导致数据不对称。而代码埋点的后台是公司自己的服务器,自己核心的模拟可以做校准,基本进行更准确的数据采集。
第三种是通过导入辅助工具,将后台生成的日志、数据表、线下数据用实时批量方式灌到里面,这是一个很强的耦合。
数据采集需要采集数据和分析数据的人共同参与进来,分析数据的人明确业务指标,并且对于数据的准确性有敏感的判断力,采集数据的人再结合业务进行系统性的采集。
二、数据建模
很多公司都有业务数据库,里面存放着用户注册信息、交易信息等,然后产品经理、运营人员向技术人员寻求帮助,用业务数据库支持业务上的数据分析。但是这样维护成本很高,且几千万、几亿条数据不能很好地操作。所以,数据分析和正常业务运转有两项分析,数据分析单独建模、单独解决问题。
数据建模有两大标准:易理解和性能好。
数据驱动不是数据分析师、数据库管理员的专利,让公司每一个业务人员都能在工作中运用数据进行数据分析,并能在获得秒级响应,验证自己的新点子新思维,尝试新方法,才是全员数据驱动的健康状态。
多维数据分析模型(OLAP)是用户数据分析中最有效的模型,它把用户的访问数据都归类为维度和指标,城市是维度,操作系统也是维度,销售额、用户量是指标。建立好多维数据分析模型,解决的不是某个业务指标分析的问题,使用者可以灵活组合,满足各种需求。
三、数据分析
数据分析支持产品改进
产品经理在改进产品功能时,往往是拍脑袋灵光一现,再对初级的点子进行再加工,这是不科学的。《精益创业》中讲过一个理念,把数据分析引入产品迭代,对已有的功能进行数据采集和数据分析,得出有用的结论引入下一轮迭代,从而改进产品。在这个过程中大数据分析很关键。
Facebook 的创始人曾经介绍过他的公司如何确定产品改进方向。Facebook 采用了一种机制:每一个员工如果有一个点子,可以抽样几十万用户进行尝试,如果结果不行,就放弃这个点子,如果这个效果非常好,就推广到更大范围。这是把数据分析引入产品迭代的科学方法。
桑文锋在 2007 年加入百度时,也发现了一个现象,他打开邮箱会收到几十封报表,将百度知道的访问量、提问量、回答量等一一介绍。当百度的产品经理提出一个需求时,工程师会从数据的角度提出疑问,这个功能为什么好 有什么数据支撑 这个功能上线时如何评估 有什么预期数据 这也是一种数据驱动产品的体现。
数据驱动运营监控
运营监控通常使用海盗模型,所谓的运营就是五件事:触达是怎么吸引用户过来;然后激活用户,让用户真正变成有效的用户;然后留存,提高用户粘性,让用户能停留在你的产品中不断使用;接下来是引荐,获取用户这么困难,能不能发动已有的用户,让已有用户带来新用户,实现自传播;最后是营收,做产品最终要赚钱。要用数据分析,让运营做的更好。
数据分析方法
互联网常见分析方法有几种,多维分析、漏斗分析、留存分析、用户路径、用户分群、点击分析等等,不同的数据分析方法适用于不同的业务场景,需要自主选择。
举个多维分析的例子,神策数据有一个视频行业的客户叫做开眼,他们的软件有一个下载页面,运营人员曾经发现他们的安卓 APP 下载量远低于 iOS,这是不合理的。他们考虑过是不是 iOS 用户更愿意看视频,随后从多个维度进行了分析,否定了这个结论,当他们发现某些安卓版本的下载量为零,分析到屏幕宽高时,看出这个版本下载按钮显示不出来,所以下载比例非常低。就这样通过多维分析,找出了产品改进点。
举个漏斗分析的例子,神策数据的官网访问量很高,但是注册-登录用户的转化率很低,需要进行改进。所以大家就思考如何把转化漏斗激活地更好,后来神策做了小的改变,在提交申请试用后加了一个查看登录页面,这样用户收到账户名密码后可以随手登录,优化了用户体验,转化率也有了可观的提升。
四、指标
如何定义指标 对于创业公司来说,有两种方法非常有效:第一关键指标法和海盗指标法。
第一关键指标法是《精益数据分析》中提出的理论,任何一个产品在某个阶段,都有一个最需要关注的指标,其他指标都是这个指标的衍生,这个指标决定了公司当前的工作重点,对一个初创公司来说,可能开始关注日活,围绕日活又扩展了一些指标,当公司的产品成熟后,变现就会成为关键,净收入(GMV)会变成第一关键指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01