京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中3种内建数据结构:列表、元组和字典
Python中有3种内建的数据结构:列表、元组和字典。参考简明Python教程
1. 列表
list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个 序列 的项目。假想你有一个购物列表,上面记载着你要买的东西,你就容易理解列表了。只不过在你的购物表上,可能每样东西都独自占有一行,而在Python中,你在每个项目之间用逗号分割。
列表中的项目应该包括在方括号中,这样Python就知道你是在指明一个列表。一旦你创建了一个列表,你可以添加、删除或是搜索列表中的项目。由于你可以增加或删除项目,我们说列表是 可变的 数据类型,即这种类型是可以被改变的。
例:

输出
$python using_list.py
These items are: Linux Nginx MySQL PHP
add Apache.
list is now ['Linux', 'Nginx', 'MySQL', 'PHP', 'Apache']
I will sort my list now
Sorted list is ['Apache', 'Linux', 'MySQL', 'Nginx', 'PHP']
The first item Apache
delete first item
list is now ['Linux', 'MySQL', 'Nginx', 'PHP']
2. 元组
元组和列表十分类似,只不过元组和字符串一样是 不可变的 即你不能修改元组。元组通过圆括号中用逗号分割的项目定义。元组通常用在使语句或用户定义的函数能够安全地采用一组值的时候,即被使用的元组的值不会改变。
例:
#!/usr/bin/env python
#coding:utf8
zoo = ('wolf', 'elephant', 'penguin')
print 'Number of animals in the zoo is', len(zoo)
new_zoo = ('monkey', 'dolphin', zoo)
print 'Number of animals in the new zoo is', len(new_zoo)
print 'All animals in new zoo are', new_zoo
print 'Animals brought from old zoo are', new_zoo[2]
print 'Last animal brought from old zoo is', new_zoo[2][2]
输出
$ python using_tuple.py
Number of animals in the zoo is 3
Number of animals in the new zoo is 3
All animals in new zoo are ('monkey', 'dolphin', ('wolf', 'elephant', 'penguin'))
Animals brought from old zoo are ('wolf', 'elephant', 'penguin')
Last animal brought from old zoo is penguin
3. 字典
字典类似于你通过联系人名字查找地址和联系人详细情况的地址簿,即,我们把键(名字)和值(详细情况)联系在一起。注意,键必须是唯一的,就像如果有两个人恰巧同名的话,你无法找到正确的信息。
注意,你只能使用不可变的对象(比如字符串)来作为字典的键,但是你可以不可变或可变的对象作为字典的值。基本说来就是,你应该只使用简单的对象作为键。
键值对在字典中以这样的方式标记:d = {key1 : value1, key2 : value2 }。注意它们的键/值对用冒号分割,而各个对用逗号分割,所有这些都包括在花括号中。
记住字典中的键/值对是没有顺序的。如果你想要一个特定的顺序,那么你应该在使用前自己对它们排序。
字典是dict类的实例/对象。
例:
#!/usr/bin/env python
#coding:utf8
contacts = { 'Admin' : 'admin@jb51.net',
'Linuxeye' : 'linuxeye@jb51.net',
'Support' : 'support@jb51.net'
}
print "Linuxeye's address is %s" % contacts['Linuxeye']
# Adding a key/value pair
contacts['test'] = 'test@jb51.net'
# Deleting a key/value pair
del contacts['Support']
print '\nThere are %d contacts in the address-book\n' % len(contacts)
for name, address in contacts.items():
print 'Contact %s at %s' % (name, address)
if contacts.has_key('test'):
print "\ntest's address is %s" % contacts['test']
输出
$ python using_dict.py
Linuxeye's address is linuxeye@jb51.net
There are 3 contacts in the address-book
Contact Admin at admin@jb51.net
Contact test at test@jb51.net
Contact Linuxeye at linuxeye@jb51.net
test's address is test@jb51.net
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27