京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python列表与元组详解实例
在这章中引入了数据结构的概念。数据结构是通过某种方式组织在一起的数据元素的集合。在python中,最基本的数据结构就是序列。序列中的每个元素被分配一个序号,即元素的位置,也被称为索引。注意:第一个索引是0。
1.序列概览
python有6种内建的序列:列表,元组,字符串,Unicode字符串,buffer对象和xrange对象。
这里重点介绍列表和元组。列表和元组主要区别在于,列表可以修改,元组不可修改。一般来说,在几乎所有情况下列表都可以代替元组。
在需要操作一组数值的时候,序列很好用:
代码如下:
Edward = ["Gumby",42]
同时,序列可以包含其他的序列。如:
代码如下:
Edward = ["Gumby",42]
John = ["Smith",50]
database = [Edward,John]
2. 通用序列操作
所有序列类型都可以进行某些特点的操作,包括:索引,分片,加,乘以及检查某个元素是否属于序列的成员(成员资格)。除此之外,python还有计算序列长度,找出最大元素和最小元素的内建函数。
2.1 索引
序列中的所有元素都是有编号的--从0开始递增。这些元素可以通过编号分别访问:
代码如下:
>>>greeting = "hello"
>>>greeting[0]
'H'
使用负数索引的话,python会从右边,也就是从最后一个元素开始计数,最后一个元素的位置编号是-1!
代码如下:
>>> greeting[-1]
'g'
2.2 分片
分片可以访问一定范围内的元素,通过冒号相隔的2个索引来实现。分片对于提取序列的一部分是很有用的,第一个索引是提取部分的第一个元素编号,最后的索引是分片之后剩下部分的第一个元素编号。
代码如下:
>>> number = [1,2,3,4,5,6,7,8,9,10]
>>> number[3:6]
[4,5,6]
>>> number[0:1]
[1]
2.2.1 优雅的捷径
需要访问最后3个元素,可以这样显式操作:
代码如下:
>>> number[7:10]
[8,9,10]
这里索引10指向的第11个元素不存在,却是在最后一个元素之后。
如果需要从列表结尾开始计数,就是说如果分片所得部分包括序列结尾的元素,那么只需置空最后一个索引:
代码如下:
>>> number[-3:]
[8,9,10]
这种方法适用于序列开始的元素或者显示整个序列:
代码如下:
>>> number[:3]
[1,2,3]
>>> number[:]
[1,2,3,4,5,6,7,8,9,10]
2.2.2 更大的步长
进行分片的时候,分片的开始和结束都需要进行指定,另一个参数-步长,通常是隐式设置的。默认的步长是1。如果显示设置步长为比1大的数,那么会跳过某些元素。
代码如下:
>>> number[0:10:2]
[1,3,5,7,9]
>>> number[3:6:3]
[4]
步长不能为0,但是可以是负数,即从右到左提取元素:
代码如下:
>>> number[10:0:-2]
[10,8,6,4,2]
>>> number[0:10:-2]
[]
上面第二个式子是错误的,使用一个负数作为步长时,必须让开始点大于结束点。
2.3 序列相加
通过使用加号可以进行序列的连接操作:
代码如下:
>>> [1,2,3] + [4,5,6]
[1,2,3,4,5,6]
>>>'hello, ' + 'world'
'hello, world'
>>>[1,2,3] + 'hello'
TypeError:can only concatenate list(not 'string') to list
如上面第三个例子所示,列表和字符串是无法连接到一块的,尽管它们都是序列,但是只有2种相同类型的序列才能进行连接操作。
复制代码 代码如下:
2.4 乘法
用数字x乘以一个序列会生成新的序列,在新的序列中,原来的序列被重复x次:
[code]
>>> 'python' *5
'pythonpythonpythonpythonpython'
>>> [42] * 5
[42,42,42,42,42]
None,空列表和初始化
空列表可以通过2个中括号进行表示([]),但是如果想创建一个占用十个元素空间,却不包括任何有用内容的列表,我们就需要一个值来代表空值,可以这样做:
代码如下:
>>> sequence = [None] * 10
>>> sequence
[None,None,None,None,None,None,None,None,None,None]
2.5 成员资格
为了检查一个值是否在序列中,可以使用in运算符。它检查某个条件是否为真,然后返回相应的值(True或False)
代码如下:
>>> p = 'write'
>>> 'w' in p
True
>>> user =["a","b","c"]
>>> raw_input('Enter:') in user
Enter:a
True
2.6 长度,最大最小值
代码如下:
>>> numbers = [10,20,30]
>>> len(numbers)
>>> max(numbers)
>>> min(numbers)
>>> max(1,99)
>>> min(1,99)
上面最后2个例子中,max函数和min函数的参数并不是序列,而是以多个数字直接作为参数。
3.列表:python的“苦力”
3.1 list函数
因为字符串不能像列表一样被修改,所以有时候根据字符串创建列表会很有用。ps:list函数适用于所有类型的列表,不只是字符串。
代码如下:
>>> list('hello')
['h','e','l','l','o']
提示:可以用下面的表达式将一个由字符组成的列表转换为字符串:
代码如下:
>>> strs = ‘ '.jion(list)
>>> strs
"h e l l o"
3.2 基本列表操作
方法是一个与某些对象有紧密联系的函数,对象可能是列表,数字,也可能是字符串或者其他类型的对象。列表提供了几个方法,用于检测或者修改其中的内容。
3.2.1 append
append方法用于在列表末尾追加新的对象:
代码如下:
>>> lst = [1,2,3]
>>> lst.append(4)
>>> lst
[1,2,3,4]
注意:append方法不是简单地返回一个修改过的新列表,而是直接修改原来的列表。
3.2.2 count
count方法统计某个元素在列表中出现的次数:
代码如下:
>>> x =[[1,2],1,1,[1,2,[1,2]]]
>>> x.count(1)
2
3.2.3 extend
extend方法可以在列表的末尾一次性追加另一个序列中的多个值。
注意:extend方法和连接操作(+)最主要的区别在于:extend方法修改了被扩展的序列,而连接操作会返回一个全新的列表。
3.2.4 index
index方法用于从列表中找出某个值第一次匹配项的索引位置:
代码如下:
>>> knights = ['we','are','the','knights']
>>> knights.index('the')
2
>>> knights.index("hi")
ValueError:list.index(x):x not in list
当匹配项没有被找到时,会引发一个异常。
3.2.5 insert
insert方法用于将对象插入到列表中:
代码如下:
>>> numbers = [1,2,3,6]
>>> numbers = insert(3,5)
>>> numbers
[1,2,3,5,6]
>>> numbers[3:3] = [4]
>>> numbers
[1,2,3,4,5,6]
上面最后一个例子中通过分片赋值实现插入,但是可读性不如insert。
3.2.6 pop
pop方法会移除列表中的一个元素,并且放回该元素的值,它是唯一一个既能修改列表又能返回元素值的列表方法:
代码如下:
>>> x = [1,2,3]
>>> x.pop()
3
>>> x
[1,2]
3.2.7 remove
remove方法用于移除列表中某个值的第一个匹配项:
代码如下:
>>> x = ['to','be','to']
>>> x.remove('to')
>>> x
['be','to']
>>> x.remove('kkk')
ValueError:list.remove(x):x not in list
可以看到只有第一次出现的值被移除了,而不在列表中的值是不会移除的。
3.2.8 reverse
reverse方法将列表中的元素反向存放:
代码如下:
>>> x = [1,2,3]
>>> x.reverse()
>>> x
[3,2,1]
3.2.9 sort
sort方法用于在原位置对列表进行排序,意味着改变原来的列表,而不是简单地返回一个已排序的列表副本。
如果想要得到一个排序而不改变原来的数值,那就需要先赋值再排序:
代码如下:
>>> x = [4,2,7,1]
>>> y = x[:]
>>> y.sort()
>>> x
[4,2,7,1]
>>>y
[1,2,4,7]
注意:上面的例子中赋值使用的是y=x[:],分片是一种很有效率的复制整个列表的方法。如果简单地把x赋值给y是没有的(y=x),因为这样做就让x和y指向同一个列表了。
另一种获取已排序列表副本的方法是使用sorted函数:
代码如下:
>>> x = [4,5,3,7,2]
>>> y = sorted(x)
>>> x
[4,5,3,7,2]
>>> y
[2,3,4,5,7]
3.2.10 高级排序
如果希望元素能够按照特定的方式进行排序,那么可以通过compare(x,y)的形式自定义比较函数。内建cmp函数提供了比较函数的默认实现方式:
代码如下:
>>> cmp(1,2)
-1
>>> cmp(2,1)
>>> cmp(1,1)
>>> numbers = [5,3,9,7]
>>> numbers.sort(cmp)
>>> numbers
[3,5,7,9]
sort方法有另外2个可选参数-key和reverse。要使用它们,那就要通过名字来指定。
代码如下:
>>> x = ['a','abc','ab']
>>> x.sort(key=len)
>>> x
['a','ab','abc']
>>> y = [2,4,1,5]
>>> y.sort(reverse)
>>> y
[5,4,2,1]
4.元组:不可变序列
创建元组的语法很简单:如果你用逗号分隔了一些值,那么你就自动创建了元组。
代码如下:
>>>1,2,3
(1,2,3)
>>>(1,2,3)
(1,2,3)
>>>()
()
>>>42,
(42,)
如上面最后一个例子,如果要实现一个包括一个值的元组,必须在数值后面加一个逗号。
4.1 tuple函数
tuple将一个序列作为参数并把它转换为元组,如果参数是元组,那么该参数就会被原样返回:
代码如下:
>>> tuple([1,2,3])
(1,2,3)
>>> tuple('abc')
('a','b','c')
>>> tuple((1,2,3))
(1,2,3)
4.2 基本元组操作
元组其实并不复杂,除了创建元组和访问元组元素之外,也没有太多其他操作:
代码如下:
>>>x = 1,2,3
>>>x[1]
2
>>> x[0:2]
(1,2)
元组的分片还是元组,就像列表的分片还是列表一样。
4.3 那么,意义何在
元组是不可替代的:
(1)元组可以在映射中当作键使用,而列表不行。
(2)元组作为很多内建函数和方法的返回值存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27