京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中readline判断文件读取结束的方法
本文实例讲述了python中readline判断文件读取结束的方法。分享给大家供大家参考。具体分析如下:
大家知道,python中按行读取文件可以使用readline函数,下面现介绍一个按行遍历读取文件的方法,通过这个方法,展开我们要讨论的问题:
代码如下:
filename = raw_input('Enter your file name') #输入要遍历读取的文件路径及文件名
file = open(filename,'r')
done = 0
while not done:
aLine = file.readline()
if(aLine != ''):
print aLine,
else:
done = 1
file.close() #关闭文件
上面是我们经常看到的按行遍历一个文件方法,你可能已经注意到我在代码中写的if(aLine != '' ):部分。当readline读取到为空的时候,意味着读到了文件的结束。这个时候,问题就在这里,很多人会想,是不是遇到一个空行,也会被认为是文件的结束呢?这就引入了标题的问题。
事实上,文件的空白行并不会返回一个空行。因为在每一行的末尾还有一个或者多个分隔符,因此“空白行”至少会有一个换行符或者系统使用的其他符号。所以,即使文件中真的包含一个“空白行”,读入的行也不是空的,这就意味着在真实遍历读取到文件结束之前,程序实际上是不会停止的
readline() 和 .readlines() 非常相似。它们都在类似于以下的结构中使用:
Python .readlines()
示例如下:
代码如下:
fh = open('c:\autoexec.bat')
for line in fh.readlines():
print line
.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for ... in ... 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。
eadlines返回行数问题
官方文档这样写的:
If the optional sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly after rounding up to an internal buffer size) are read.
确实是指定大小啊并且会受内部缓冲区大小影响向上取整到内部缓冲区大小。内部缓冲区大约是8k也难怪我每次测试文件大小都是8k(8192)倍数
代码如下:
#!/usr/bin/env python
f=open('a.txt').readlines(1)
open('b.txt','w').writelines(f)
open('c.txt','w').writelines(open('a.txt').readlines(200))
open('d.txt','w').writelines(open('a.txt').readlines(9200))
open('e.txt','w').writelines(open('a.txt').readlines(26000))
open('f.txt','w').writelines(open('a.txt').readlines(40000))
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27