
大数据让未来的城市环境有了可以及时查看的“晴雨表”
近几十年来,随着全球经济的不断加速,环境污染事件越来越频繁,人类赖以生存的环境引起社会高度关注,人类环保意识逐渐被唤醒,人与环境和谐发展成为共识。
2008年以来,世界各个国家和组织纷纷采取措施推动绿色经济发展,提出了一系列的绿色经济发展战略,将发展绿色经济作为提升国家经济竞争力并使之成为占领全球制高点和领先地位的重要途径。
当下,整合环境、经济、行业等数据资源,利用大数据技术的强势发展将对环境管理理念以及管理方式产生巨大的影响。近两年,依托国家发布的一系列环境污染防治政策,部分城市生态环境监管系统陆续落成,可以对监管、溯源、趋势分析以及污染源、环境质量和风险源等做到全面感知。也就是说,未来的城市环境有了可以及时查看的“晴雨表”。
政策,是促发展的前提和保证
从环保政策“元年”2015年开始,我国环保法律法规接连出台,为环保产业提供了坚实的靠山。
2016年12月,《“十三五”生态环境保护规划》发布,该《规划》是“十三五”时期我国生态环境保护的纲领性文件。明确环境治理与生态保护修复协同联动,对生态保护与修复提出重点任务和重点工程,强调要以环境质量为核心进行综合治理、协同推进,大幅度削减污染物存量,全面提升风险防控基础能力。
2017年,环保部部署安排了环境领域九大举措。分别从坚决治理大气、水和土壤污染、深化和落实生态环保领域改革、加强环境法治建设、积极主动应对环境风险、加大生态保护力度、加强核与辐射安全监管、创新决策和管理方式,实施生态环境大数据建设工程以及促进科技创新和支撑,加强基础研究和前沿技术研发等领域做出安排。
信息公开,才能为科学治理铺平道路
大数据应用在加强环境管理和公共服务,分析污染物排放状况,分析环境质量的现状及其变化趋势,准确预测、预报、预警环境质量,准确预测、预警各类环境污染事故的发生、发展,提高环境形势分析能力等方面发挥重要作用,成为促进环境管理和科学决策的新动力。
但是,环保大数据的应用和发展离不开全社会的参与,环保大数据应用需要走政府、科研单位、企业等多方合作的道路。而环境信息公开及共享成为目前环境保护工作中急需改善的一项重要工作。我国地方在政府环境管理信息、环境质量信息、污染源信息、投资项目环评信息等方面,还需制定合理方案,打通信息孤岛,进一步推动环保数据的公开化、透明化。
贵阳乌当区建首个生态环境大数据试点
发展大数据产业,贵阳一直走在全国前列。2016年,用大数据技术助力生态文明建设,成为贵阳市积极探索的一项工作。作为全国首批生态环境大数据建设试点,乌当区试点采用“网格化布点+多元数据融合+时空数据分析”模式,对全区域内大气环境、水环境、声环境等基础环境质量信息进行全面、连续、有效记录,在实现各类生态数据大融合的前提下,构建生态大数据共享服务平台。
网格化监测的实现,让每一个监测点都可实时上传监测数据,发现异常数据可迅速定位,然后结合大数据分析功能,利用数据库里关于乌当区所有餐厅、工厂、建筑工地、道路交通等方面的数据信息,追溯污染源头。
除此之外,乌当区网格化生态环境大数据中心还监测老百姓身边的环境状况。全面及时分析出污染来源,追溯污染物扩散趋势,对污染源起到最大程度监管作用,为环境执法和决策提供直接依据。
贵阳市生态文明委相关负责人认为,生态环保大数据更大的作用,是为普通群众带来切实的健康和便利。比如,生态环境大数据中心通过点多面广的实时监测数据,结合世界卫生组织、疾控中心等权威机构关于环境和健康的相关数据模型,推出“环境健康指数”,用来量化定义环境与人体健康或人体感受的一个指数,为公众服务。
可以预见,未来环保大数据的合理开发及应用,将彻底改善纠缠人类已久的“环境治理”世纪难题,让绿色生态和可持续发展两个方面得以“齐头并进”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23