
中国大数据在世界上处于第几方阵
“中国与世界其他国家一样,都处在大数据发展的初期阶段。在收集和应用数据方面,中国表现不俗。但在处理分析数据的技术和工具方面,中国与发达国家相比还比较落后。”中国电子信息产业发展研究院副院长樊会文接受《经济日报》记者采访时说。
产业结构有差距
中国大数据在世界上处于第几方阵?对此,工信部赛迪研究院软件所所长潘文表示,大数据产业是新兴产业,中国和世界各国都处于起步阶段,综合排名缺乏统一标准。从大数据产业收集端、处理端和应用端来看,中国在收集端和应用端全球领先,在处理端核心技术方面还有差距。
关注大数据观察网(微信公众号:shuju_net)了解更多精彩资讯
目前,公开数据中还没有对大数据强国的排名,但对全球大数据公司的排名却很多,虽然标准不一,但总体来看,公认的领军企业是亚马逊、SAP、谷歌、IBM等,仍是国外企业居多。
“各个国家在大数据方面的优势各有不同,目前还没法评判谁做得更好。”运满满研究院院长徐强表示,比如,日本在医疗交通方面做得不错,欧洲在数据保护方面领先,新加坡在电子政务方面独树一帜。而即使是大数据核心技术比较领先的美国,在智慧物流、移动支付等部分垂直应用领域也逊色于中国。
“与发达国家相比,中国大数据产业结构落后于全球市场的发展步伐。尤其是美国的大数据产业结构非常好,服务占比很大,而我国的产业结构还处于中低端。”潘文坦言。
从大数据核心产业结构来看,服务是大数据产业的最核心部分。全球市场数据分析服务占整体收入的47.6%,而国内市场数据分析服务在整体收入中占比却比较低,主要企业仍停留在前期的基础软硬件设施投入和部署阶段。樊会文表示,从这个对比可以判断,国内大数据市场虽然已经进入快速增长通道,但仍处于增长的早期阶段。
工信部信息化和软件服务业司副司长李冠宇指出,与发达国家相比,中国在新型计算平台、分布式计算架构、大数据处理、分析和呈现等相关核心技术方面与国外相比仍存在较大差距,对开源技术和相关生态系统的影响力弱。
“目前,美国、英国、法国、澳大利亚等国在大数据核心技术方面居于领先地位。”潘文指出,相关核心技术薄弱还带来数据主权保护的问题。由于数据在网络虚拟空间进行传播,各国都在加强对本国数据的控制力,关注数据主权。美国、欧盟等纷纷利用技术优势和法律法规加强本国数据主权保护,但目前,我国由于基础核心技术支撑能力较弱、数据跨境流动保护规则缺失等,在数据主权保障能力方面还显不足。
应用端一马当先
“中国大数据对世界的贡献主要是三点。”潘文分析说,一是引领大数据的创新应用,特别是在消费领域;二是互联网公司、初创企业引领技术创新步伐,特别是语音识别、图像理解、文本挖掘等方面已涌现出明星企业;三是我国已成为产生和积累数据量最大、数据类型最丰富的国家之一。
苹果在美国推广移动支付多年,效果一直不佳。而在中国,从饭馆到超市,甚至许多菜市场的每个摊位都实现了移动支付。公开数据显示,2016年中国移动支付规模是美国的50倍。
“我国在大数据应用方面处于世界前列,特别是在服务业领域,蓬勃发展的电子商务衍生出一系列基于大数据的互联网金融及信用体系产品,互联网创新应用普及速度非常快。”潘文说。以互联网金融领域为例,蚂蚁金服推出了芝麻信用,其芝麻分来自淘宝、支付宝的数据占30%-40%。通过综合考虑个人用户的信用历史、行为偏好、履约能力、身份特质、人脉关系等信息,直接与其信用挂钩,准确率非常高。
与世界各国相比,中国大数据体量位居前列。我国大型数据中心跨地区经营互联网数据中心业务的企业已达到295家。李冠宇指出,目前中国网民数量超过7亿,移动电话用户突破13亿,均居全球第一。中国已是世界上产生和积累数据体量最大、类型最丰富的国家之一。
“中国网络用户规模大,终端数量多,产业经济规模大,因此在数据规模上具有天然的优势。”樊会文说。
在今年的电子信息博览会主论坛上,科大讯飞董事长刘庆峰播放了一段视频——美国前总统奥巴马感谢科大讯飞让他学会了中文。其实这段视频是由科大讯飞人工智能语音合成系统完成的一次逼真模仿。2016年,科大讯飞在国际语音识别大赛、国际(机器)认知智能大赛中超过了IBM、微软等行业巨头获得大赛指标第一名。
“在许多垂直领域,中国的大数据核心技术处于全球领先。比如在智慧物流领域,中国就比美国发展得好。”徐强表示,调研表明,菜鸟网络、运满满等企业的智慧物流建设,通过为货主和司机提供实时信息数据匹配,可以降低物流运价5%至10%,单车运行效率可以提升30%以上,降本增效效果显著。
中国发展大数据已经具备一定的技术和产业基础。作为信息产业大国和互联网大国,2016年中国软件和信息技术服务业产值4.9万亿元,全球10大互联网企业中国占据4席,为大数据应用奠定了基础。百度、阿里巴巴、腾讯等国内的龙头互联网企业利用自身掌握大量数据资源的优势,不断创新和积累数据处理分析等关键技术,并基于大数据分析优化提升现有业务、开拓新业务,已经具备了建设和运维超大规模大数据平台的技术实力。
加快建设数据强国
2017年,全球大数据市场结构继续向服务化转变,同时从垄断竞争向完全竞争格局演化。典型的表现是,企业数量迅速增多,服务的差异度增大,技术门槛逐步降低,市场竞争越发激烈。据美国国际数据公司(IDC)统计,2017年世界大数据产业市场规模将达1508亿美元,比前一年增加12.4%。其中美国为788亿美元,西欧为341亿美元,两者之和占全世界市场规模的四分之三。
“不同国家、不同公司的统计标准不一样,因此无法绝对比较中国大数据产业市场规模在全球的占比。但可以肯定的是,中国大数据产业规模发展迅速,将很快步入全球前列。”潘文介绍说,赛迪研究院统计数据显示,2016年,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业达到3100亿元,大数据关联产业规模达到6万亿元,大数据融合产业规模达到3.5万亿元。工信部发布的《大数据产业发展规划(2016-2020年)》提出,到2020年,大数据相关产品和服务业务收入将突破1万亿元。
中国发展大数据有集中力量办大事的优势。据李冠宇介绍,目前我国已经颁布实施了《促进大数据发展行动纲要》《大数据产业发展规划(2016-2020年)》等一系列重大政策,有20多个地区出台了相关的政策措施,还有20多个地方设立了专门的大数据管理机构,已先后建立8个大数据综合试验区。中国大数据发展呈现良好势头,形成了京津冀、长三角、中西部和东北地区等一批聚集发展区。
潘文认为,中国大数据产业发展将迎来“黄金期”。随着国家大数据战略配套政策措施的制定和实施,我国大数据产业的发展环境将进一步优化,大数据的新业态、新业务、新服务将迎来爆发式增长,产业链进一步成熟和扩张。同时互联网的高速发展,将带动社会各领域对大数据服务需求进一步加强,政务、工业、电信、金融、交通、医疗等领域的应用层出不穷。预计2017年我国大数据核心产业规模有望达到4185亿元,未来3年中国大数据市场规模还将维持40%左右的高速增长。
尽管与发达国家相比,中国大数据发展还存在数据资源开放共享程度低、技术创新与支撑能力不强、大数据产业支撑体系不完善等差距,“但中国要发挥出市场规模大、应用需求旺的优势,以企业为主体集中攻克大数据关键技术,全面提升我国大数据的资源掌控能力、技术支撑能力和价值挖掘能力,加快迈向数据强国。”李冠宇说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26