
Python实现的数据结构与算法之快速排序详解
本文实例讲述了Python实现的数据结构与算法之快速排序。分享给大家供大家参考。具体分析如下:
一、概述
快速排序(quick sort)是一种分治排序算法。该算法首先 选取 一个划分元素(partition element,有时又称为pivot);接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分)、划分元素pivot、right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上;然后分别对left和right两个部分进行递归排序。
其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一个元素作为划分元素,当然也有更复杂的选择方式;划分 过程根据划分元素重排列表,是快速排序算法的关键所在,该过程的原理示意图如下:
<-- 选取划分元素 -->
<-- 划分过程 -->
<-- 划分结果 -->
快速排序算法的优点是:原位排序(只使用很小的辅助栈),平均情况下的时间复杂度为 O(n log n)。快速排序算法的缺点是:它是不稳定的排序算法,最坏情况下的时间复杂度为 O(n2)。
二、Python实现
1、标准实现
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def stdQuicksort(L):
qsort(L, 0, len(L) - 1)
def qsort(L, first, last):
if first < last:
split = partition(L, first, last)
qsort(L, first, split - 1)
qsort(L, split + 1, last)
def partition(L, first, last):
# 选取列表中的第一个元素作为划分元素
pivot = L[first]
leftmark = first + 1
rightmark = last
while True:
while L[leftmark] <= pivot:
# 如果列表中存在与划分元素pivot相等的元素,让它位于left部分
# 以下检测用于划分元素pivot是列表中的最大元素时,
#防止leftmark越界
if leftmark == rightmark:
break
leftmark += 1
while L[rightmark] > pivot:
# 这里不需要检测,划分元素pivot是列表中的最小元素时,
# rightmark会自动停在first处
rightmark -= 1
if leftmark < rightmark:
# 此时,leftmark处的元素大于pivot,
#而rightmark处的元素小于等于pivot,交换二者
L[leftmark], L[rightmark] = L[rightmark], L[leftmark]
else:
break
# 交换first处的划分元素与rightmark处的元素
L[first], L[rightmark] = L[rightmark], L[first]
# 返回划分元素pivot的最终位置
return rightmark
2、Pythonic实现
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def pycQuicksort(L):
if len(L) <= 1: return L
return pycQuicksort([x for x in L if x < L[0]]) + \
[x for x in L if x == L[0]] + \
pycQuicksort([x for x in L if x > L[0]])
对比 标准实现 可以看出,Pythonic实现 更简洁、更直观、更酷。但需要指出的是,Pythonic实现 使用了Python中的 列表解析 (List Comprehension,也叫列表展开、列表推导),每一次 递归排序 都会产生新的列表,因此失去了快速排序算法本来的 原位排序 的优点。
三、算法测试
#!/usr/bin/env python
# -*- coding: utf-8 -*-
if __name__ == '__main__':
L = [54, 26, 93, 17, 77, 31, 44, 55, 20]
M = L[:]
print('before stdQuicksort: ' + str(L))
stdQuicksort(L)
print('after stdQuicksort: ' + str(L))
print('before pycQuicksort: ' + str(M))
print('after pycQuicksort: ' + str(pycQuicksort(M)))
运行结果:
$ python testquicksort.py
before stdQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after stdQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
before pycQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after pycQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27