
人工智能、大数据的十大类算法及其擅长的任务
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文作者介绍了用于实现AI、大数据、和数据科学的十大类算法,以及它们分别擅长的任务。
算法正在取代我们的工作吗?是。。。是的。。。但算法是个好东西。
算法是一系列包含能够帮助人解决问题、完成目标任务的规则的步骤。用正确的方式把这些步骤和规则组织起来,能够自动化算法建立人工智能(AI)。AI能够帮助我们做大量的分析性工作,让我们把时间集中于更有价值的事情。
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文介绍了用于实现AI、大数据、和数据科学的十大类算法。
1. Crunchers
这些算法使用比较少的重复步骤和较为简单的规则处理(crunch)复杂问题。我们给这些算法提供数据,它们就能得出一个答案。如果我们不喜欢这个答案,可以给算法提供更多的数据,让算法调整答案。Cruncher类算法擅长客户分类、预估项目持续时间、分析调查数据等任务。
2. Guides
这些算法为我们怎样根据成功的历史操作得出最好的策略、步骤或工作流提供指南(guides)。指南类算法擅长协调大量需要理解并执行如风险管理、战略改变、复杂项目管理等事情的动态部件。
3. Advisors
这些算法基于历史规律为我们提供预测、排名、成功的可能性等,对我们提出最佳选择的建议(advise)。建议类(advisors)算法擅长提出决策、规划和风险缓解方面的建议。
4. Predictors
这些算法使用解释历史行为和历史事件的小型可重复性决定和判断来对未来的人类行为和事件作出预测。预测类(predictors)算法擅长商业规划、市场预测、品牌管理、健康诊断,以及预测消费者行为、品牌吸引力、欺诈行为、营销机会、气候事件以及疾病爆发等。
5. TacTIcians
这些算法在战术上(tacTIcally)预先考虑短期行为并作出相应的反应。它们通过应用短期战术规则(short-term tacTIcal rules)的组合以及从相关人员中学来的信息做到这一点。战术类(tacTIcians)算法擅长平衡供应链、系统性能、人力工作负荷和生产线。
6. Strategists
这些算法从策略上(strategically)预测行为并作相应的计划。策略类(strategists)算法根据过去的数据发掘洞察和创新机会。它们通过应用短期规则和长期规则的组合、从相关人员中学来的信息以及这些人在不同的环境中的反应来做到这一点。策略类(strategists)算法擅长预测市场需求、客户流失、工作效率以及员工流失。
7. Lifters
这些算法能够代替我们自动完成重复性的任务,让我们能够专注于更有价值的工作。lifters类算法擅长分析和识别规则、欺诈行为、风险、改进、转型、机会和创新等中重复的模式和差距。
8. Partners
这些算法具有我们的领域中的许多专业知识,能让我们更高效、更专注。合作伙伴类(partners)算法擅长为我们提出建议、提供训练,让我们密切了解市场变化,并调整每日、每季度以及每年的目标。Partners理解我们的行为模式,知道我们何时应该吃午饭,气温达到几度时需要开空调等等。
9. Okays
这些算法在多个领域具有专业知识,能够代替我们的团队完成全部分析工作。算法完成分析后,团队中的每个人分别根据自己的专业技能审核分析结果,然后通过(okay)结果。Okays类算法擅长从各个角度深入分析物体构建大型图像,可用于业务规划、战略改变、文化转型等。
10. Supervisors
这些算法对我们的工作具有关键作用。它们能够管理工作者及其业务,使企业保持生产效率和财力的强健。监督类(supervisors)算法能够协调人力一起其他算法,帮助我们实现长期的战略发展目标。
AI是我们在全球商业舞台上生存的关键。仅以人类资本参与竞争是不够的,我们不仅需要AI来代替我们自动化工作,让我们的创新力有更大的发挥,而且需要AI 来改变我们的行为、习惯以及工作风格,以使我们保持竞争力。为了保持我们的竞争优势,我们必须理解AI如何工作,同时AI也必须理解我们如何工作。而为了理解我们如何工作,AI必须理解情绪智能(Emotional Intelligence)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28