
Python操作SQLite数据库的方法详解
本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下:
SQLite简单介绍
SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身。它是遵守ACID的关联式数据库管理系统,它的设计目标是嵌入式的,而且目前已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了。它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,比如 Tcl、C#、PHP、Java等,还有ODBC接口,同样比起Mysql、PostgreSQL这两款开源世界著名的数据库管理系统来讲,它的处理速度比他们都快。SQLite第一个Alpha版本诞生于2000年5月. 至今已经有10个年头,SQLite也迎来了一个版本 SQLite 3已经发布。
安装与使用
1.导入Python SQLITE数据库模块
Python2.5之后,内置了SQLite3,成为了内置模块,这给我们省了安装的功夫,只需导入即可~
import sqlite3
2. 创建/打开数据库
在调用connect函数的时候,指定库名称,如果指定的数据库存在就直接打开这个数据库,如果不存在就新创建一个再打开。
cx = sqlite3.connect("E:/test.db")
也可以创建数据库在内存中。
con = sqlite3.connect(":memory:")
3.数据库连接对象
打开数据库时返回的对象cx就是一个数据库连接对象,它可以有以下操作:
① commit()--事务提交
② rollback()--事务回滚
③ close()--关闭一个数据库连接
④ cursor()--创建一个游标
关于commit(),如果isolation_level隔离级别默认,那么每次对数据库的操作,都需要使用该命令,你也可以设置isolation_level=None,这样就变为自动提交模式。
4.使用游标查询数据库
我们需要使用游标对象SQL语句查询数据库,获得查询对象。 通过以下方法来定义一个游标。
cu=cx.cursor()
游标对象有以下的操作:
① execute()--执行sql语句
② executemany--执行多条sql语句
③ close()--关闭游标
④ fetchone()--从结果中取一条记录,并将游标指向下一条记录
⑤ fetchmany()--从结果中取多条记录
⑥ fetchall()--从结果中取出所有记录
⑦ scroll()--游标滚动
1. 建表
复制代码 代码如下:
cu.execute("create table catalog (id integer primary key,pid integer,name varchar(10) UNIQUE,nickname text NULL)")
上面语句创建了一个叫catalog的表,它有一个主键id,一个pid,和一个name,name是不可以重复的,以及一个nickname默认为NULL。
2. 插入数据
请注意避免以下写法:
# Never do this -- insecure 会导致注入攻击
pid=200
c.execute("... where pid = '%s'" % pid)
正确的做法如下,如果t只是单个数值,也要采用t=(n,)的形式,因为元组是不可变的。
for t in[(0,10,'abc','Yu'),(1,20,'cba','Xu')]:
cx.execute("insert into catalog values (?,?,?,?)", t)
简单的插入两行数据,不过需要提醒的是,只有提交了之后,才能生效.我们使用数据库连接对象cx来进行提交commit和回滚rollback操作.
cx.commit()
3.查询
cu.execute("select * from catalog")
要提取查询到的数据,使用游标的fetch函数,如:
In [10]: cu.fetchall()
Out[10]: [(0, 10, u'abc', u'Yu'), (1, 20, u'cba', u'Xu')]
如果我们使用cu.fetchone(),则首先返回列表中的第一项,再次使用,则返回第二项,依次下去.
4.修改
In [12]: cu.execute("update catalog set name='Boy' where id = 0")
In [13]: cx.commit()
注意,修改数据以后提交
5.删除
cu.execute("delete from catalog where id = 1")
cx.commit()
6.使用中文
请先确定你的IDE或者系统默认编码是utf-8,并且在中文前加上u
x=u'鱼'
cu.execute("update catalog set name=? where id = 0",x)
cu.execute("select * from catalog")
cu.fetchall()
[(0, 10, u'\u9c7c', u'Yu'), (1, 20, u'cba', u'Xu')]
如果要显示出中文字体,那需要依次打印出每个字符串
In [26]: for item in cu.fetchall():
....: for element in item:
....: print element,
....: print
....:
0 10 鱼 Yu
1 20 cba Xu
7.Row类型
Row提供了基于索引和基于名字大小写敏感的方式来访问列而几乎没有内存开销。 原文如下:
sqlite3.Row provides both index-based and case-insensitive name-based access to columns with almost no memory overhead. It will probably be better than your own custom dictionary-based approach or even a db_row based solution.
Row对象的详细介绍
class sqlite3.Row
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic a tuple in most of its features.
It supports mapping access by column name and index, iteration, representation, equality testing and len().
If two Row objects have exactly the same columns and their members are equal, they compare equal.
Changed in version 2.6: Added iteration and equality (hashability).
keys()
This method returns a tuple of column names. Immediately after a query, it is the first member of each tuple in Cursor.description.
New in version 2.6.
下面举例说明
In [30]: cx.row_factory = sqlite3.Row
In [31]: c = cx.cursor()
In [32]: c.execute('select * from catalog')
Out[32]: <sqlite3.Cursor object at 0x05666680>
In [33]: r = c.fetchone()
In [34]: type(r)
Out[34]: <type 'sqlite3.Row'>
In [35]: r
Out[35]: <sqlite3.Row object at 0x05348980>
In [36]: print r
(0, 10, u'\u9c7c', u'Yu')
In [37]: len(r)
Out[37]: 4
In [39]: r[2] #使用索引查询
Out[39]: u'\u9c7c'
In [41]: r.keys()
Out[41]: ['id', 'pid', 'name', 'nickname']
In [42]: for e in r:
....: print e,
....:
0 10 鱼 Yu
使用列的关键词查询
In [43]: r['id']
Out[43]: 0
In [44]: r['name']
Out[44]: u'\u9c7c'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10