京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新零售崛起大数据助力店铺精准选址
新零售时代,对于线下店铺的设立,无论是从目标客户定位、市场环境定位,还是店铺定位,都需要通过线下的数据分析,进行整体的、全新的智能规划。
那么,对于常规的选址方式,一般要靠人为的实地考察,观察目标地段的位置,是否是热门商圈,与居民区、学校、商业区的距离,还有调查人流量、交通方式等等。同时还要面临种种情况下导致的信息不对称,投入了大量的时间和精力,却发现付出和所得完全不成正比。
数字营销时代,如何打破对人为经验的依赖,用数据说话,通过真实的数据分析结果,指导我们科学选址?璧合科技即将推出的智能客流管理营销平台-招财宝,以大数据的玩法带领大家精准选址。
接下来,我们通过两种选址场景来探索一下大数据指导选址的不同之处。
应用场景一:实体品牌连锁店新店开设
假设实体品牌连锁店需要新增分店,传统店铺的选址,你需要蹲守在店铺门口暗中观察某商圈的客流量、男女比例、客单价等等。如果在人流平均商场中选址时,你更需要清楚,什么位置更适合什么类型的店铺。
现在,店铺选址再也不用依靠人为经验盲目选择,仅需借助璧合科技招财宝-智能客流管理营销工具即可轻松搞定。平台通过分析评估预选地址所在区域商圈客流量、人口结构、同类竞争、消费客群等因素,推荐最优店铺地址。同时,借助丰富的行业选址评估模型,可视化展现目标行业受众分布,降低选址风险,用数据助力选址决策:
地段分析
只需要在系统中圈定商圈范围,实时查看预选店址周边人流量,以及区域内客流的变化趋势,是否能满足店铺客流量。
行业分析
根据同行业均值水平,进行对比分析,同一行业的客流量、消费群体是否满足。
选址对比
用户可同时预选3-5家店址,对比连锁总店、行业、不同时段人流等,计算分析最佳店铺地址。
最终连锁店新店选址,可直接通过数据分析结果,快速评估,有效控制选址风险。
应用场景二:服饰电商线下店铺设立
新零售时代的到来,纯电商服务将向电商+实体服务迈进,线下开店的趋势越来越明显。服饰电商作为新零售代表,线下体验店的设立,为粉丝打造一个全新的消费场景,也作为线上购物平台消费体验的有力补充。实体店的设立有助于线上品牌线下布局单店社群,经营粉丝经济,并以多品类战略形成品牌生活圈。
针对在线上已经积累了很大一部分目标客户的电商品牌店,线下店铺设立首先要找到线上的目标人群,其次是拓展线下未覆盖到客流群体,提升用户线下体验。而店铺选址,作为首要解决问题,是线下布局的关键第一步。同样,智能客流管理营销平台-招财宝,帮你来完成科学选址:
人群分析
通过对线上线下数据积累, 360度分析线上用户画像、兴趣爱好、消费习惯、地理位置,帮助商家深刻认知、理解目标客群,从而在线下找到目标消费者。
客流分析
通过对预选地址周边人群的男女占比、年龄阶段、客流量大小、购物频率等维度分析,确保品牌定位与周边人群消费层次匹配,从而圈定目标区域,将店铺合理设置在人流匹配度高的地方,大大提升线下实体店活跃度。
地点分析
通过人群匹配,寻找出多个符合的预选地址。基于服饰行业背景,进行不同时间段人流分析对比,对候选店址进行风险评估。需要满足客流量的同时,将地点选在距离消费者更近的区域,促进消费转化。
通过数据分析的店铺选址是迈入新零售时代的第一步,也是突破传统选址的第一步。利用大数据选址,将是未来零售业店铺选址的必然趋势。线上线下的数据打通融合,将在线下发挥更大价值。
未来的零售市场,唯富有创新性的新兴实体零售才有可能成为最终赢家! 科学正确的选址之后,店铺的客流分析、人群画像、精准营销、客户关怀等等,更将借助大数据力量进行高效运营。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04