
图像处理之Harris角度检测算法
Harris角度检测是通过数学计算在图像上发现角度特征的一种算法,而且其具有旋转不
变性的特质。OpenCV中的Shi-Tomasi角度检测就是基于Harris角度检测改进算法。
基本原理:
角度是一幅图像上最明显与重要的特征,对于一阶导数而言,角度在各个方向的变化是
最大的,而边缘区域在只是某一方向有明显变化。一个直观的图示如下:
数学原理:
基本数学公式如下:
其中W(x, y)表示移动窗口,I(x, y)表示像素灰度值强度,范围为0~255。根据泰勒级数
计算一阶到N阶的偏导数,最终得到一个Harris矩阵公式:
根据Harris的矩阵计算矩阵特征值,然后计算Harris角度响应值:
其中K为系数值,通常取值范围为0.04 ~ 0.06之间。
算法详细步骤
第一步:计算图像X方向与Y方向的一阶高斯偏导数Ix与Iy
第二步:根据第一步结果得到Ix^2 , Iy^2与Ix*Iy值
第三步:高斯模糊第二步三个值得到Sxx, Syy, Sxy
第四部:定义每个像素的Harris矩阵,计算出矩阵的两个特质值
第五步:计算出每个像素的R值
第六步:使用3X3或者5X5的窗口,实现非最大值压制
第七步:根据角度检测结果计算,最提取到的关键点以绿色标记,显示在原图上。
程序关键代码解读:
第一步计算一阶高斯偏导数的Ix与Iy值代码如下:
filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);
关于如何计算高斯一阶与二阶偏导数请看这里:
http://blog.csdn.net/jia20003/article/details/16369143
http://blog.csdn.net/jia20003/article/details/7664777
第三步:分别对第二步计算出来的三个值,单独进行高斯
模糊计算,代码如下:
private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } }
第六步:非最大信号压制(non-max value suppression)
这个在边源检测中是为了得到一个像素宽的边缘,在这里则
是为了得到准确的一个角点像素,去掉非角点值。代码如下:
/*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } }
运行效果:
程序完整源代码:
package com.gloomyfish.image.harris.corner; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; import com.gloomyfish.filter.study.GrayFilter; public class HarrisCornerDetector extends GrayFilter { private GaussianDerivativeFilter filter; private List<HarrisMatrix> harrisMatrixList; private double lambda = 0.04; // scope : 0.04 ~ 0.06 // i hard code the window size just keep it' size is same as // first order derivation Gaussian window size private double sigma = 1; // always private double window_radius = 1; // always public HarrisCornerDetector() { filter = new GaussianDerivativeFilter(); harrisMatrixList = new ArrayList<HarrisMatrix>(); } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); initSettings(height, width); if ( dest == null ) dest = createCompatibleDestImage( src, null ); BufferedImage grayImage = super.filter(src, null); int[] inPixels = new int[width*height]; // first step - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width); // second step - calculate the Ix^2, Iy^2 and Ix^Iy for(HarrisMatrix hm : harrisMatrixList) { double Ix = hm.getXGradient(); double Iy = hm.getYGradient(); hm.setIxIy(Ix * Iy); hm.setXGradient(Ix*Ix); hm.setYGradient(Iy*Iy); } // 基于高斯方法,中心点化窗口计算一阶导数和,关键一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊 calculateGaussianBlur(width, height); // 求取Harris Matrix 特征值 // 计算角度相应值R R= Det(H) - lambda * (Trace(H))^2 harrisResponse(width, height); // based on R, compute non-max suppression nonMaxValueSuppression(width, height); // match result to original image and highlight the key points int[] outPixels = matchToImage(width, height, src); // return result image setRGB( dest, 0, 0, width, height, outPixels ); return dest; } private int[] matchToImage(int width, int height, BufferedImage src) { int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels ); int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (inPixels[index] >> 24) & 0xff; tr = (inPixels[index] >> 16) & 0xff; tg = (inPixels[index] >> 8) & 0xff; tb = inPixels[index] & 0xff; HarrisMatrix hm = harrisMatrixList.get(index); if(hm.getMax() > 0) { tr = 0; tg = 255; // make it as green for corner key pointers tb = 0; outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } else { outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } } } return outPixels; } /*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } } /*** * 计算两个特征值,然后得到R,公式如下,可以自己推导,关于怎么计算矩阵特征值,请看这里: * http://www.sosmath.com/matrix/eigen1/eigen1.html * * A = Sxx; * B = Syy; * C = Sxy*Sxy*4; * lambda = 0.04; * H = (A*B - C) - lambda*(A+B)^2; * * @param width * @param height */ private void harrisResponse(int width, int height) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double c = hm.getIxIy() * hm.getIxIy(); double ab = hm.getXGradient() * hm.getYGradient(); double aplusb = hm.getXGradient() + hm.getYGradient(); double response = (ab -c) - lambda * Math.pow(aplusb, 2); hm.setR(response); } } } private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } } public double[][] get2DKernalData(int n, double sigma) { int size = 2*n +1; double sigma22 = 2*sigma*sigma; double sigma22PI = Math.PI * sigma22; double[][] kernalData = new double[size][size]; int row = 0; for(int i=-n; i<=n; i++) { int column = 0; for(int j=-n; j<=n; j++) { double xDistance = i*i; double yDistance = j*j; kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI; column++; } row++; } // for(int i=0; i<size; i++) { // for(int j=0; j<size; j++) { // System.out.print("\t" + kernalData[i][j]); // } // System.out.println(); // System.out.println("\t ---------------------------"); // } return kernalData; } private void extractPixelData(int[] pixels, int type, int height, int width) { int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (pixels[index] >> 24) & 0xff; tr = (pixels[index] >> 16) & 0xff; tg = (pixels[index] >> 8) & 0xff; tb = pixels[index] & 0xff; HarrisMatrix matrix = harrisMatrixList.get(index); if(type == GaussianDerivativeFilter.X_DIRECTION) { matrix.setXGradient(tr); } if(type == GaussianDerivativeFilter.Y_DIRECTION) { matrix.setYGradient(tr); } } } } private void initSettings(int height, int width) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix matrix = new HarrisMatrix(); harrisMatrixList.add(index, matrix); } } } }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26