
Python正则表达式之基础篇
正则表达式是用于处理字符串的强大工具,它并不是Python的一部分。
其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同。
它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的。
下图展示了使用正则表达式进行匹配的流程:
1.1介绍
正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。
正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。re 模块使 Python 语言拥有全部的正则表达式功能。
1.2要知道的各种用法
模式字符串使用特殊的语法来表示一个正则表达式:
字母和数字表示他们自身。一个正则表达式模式中的字母和数字匹配同样的字符串。多数字母和数字前加一个反斜杠时会拥有不同的含义。标点符号只有被转义时才匹配自身,否则它们表示特殊的含义。反斜杠本身需要使用反斜杠转义。
由于正则表达式通常都包含反斜杠,所以你最好使用原始字符串来表示它们。模式元素(如 r'/t',等价于'//t')匹配相应的特殊字符。
下表列出了正则表达式模式语法中的特殊元素。如果你使用模式的同时提供了可选的标志参数,某些模式元素的含义会改变。
当然这些用法很多,待会会给出经常使用到的用法,多试试就能理解了。
模式
字符类
特殊字符类
1.3re.match函数
re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。
re.match(pattern, string, flags = 0)
pattern 正则表达式
string 匹配的字符串
flags 标志位,用来控制匹配方式,下文会讲
直接上程序:
import string,re
r = "abc" #正则表达式
if re.match(r,"abc"): #匹配
print 'done'
else:
print 'defeat'
结果:
done
可以根据上面各表给出的用法,多练练:
import string,re
r = "a.c" #正则表达式 . 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
if re.match(r,"abc"):
print re.match(r,"abc")
print 'done'
else:
print 'defeat'
结果:
<_sre.SRE_Match object at 0x01dd6158>
done
注意这里不是显示匹配成功的字符串,re.match() 返回的是一个对象,不成功返回的是none.
我们可以通过group(num)或groups()匹配对象函数来获取匹配表达式。
程序:
import string,re
r = "a.c"
if re.match(r,"abc"):
line = re.match(r,"abc")
print line.group()
else:
print 'defeat'
结果:
abc
1.3re.search函数
re.search() 扫描整个字符串并返回第一个成功的匹配
re.search(pattern, string, flags=0)
pattern 正则表达式
string 匹配的字符串
flags 标志位,用于控制匹配方式
和re.match()一样,匹配成功re.search方法返回一个匹配的对象,否则返回None。
直接上程序:
import string,re
r = "abc"
s = 'aacawcabc'
if re.search(r,s):
line = re.search(r,s)
print line.group()
结果:
abc
注意:
re.match()和re.search()的区别:
re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
1.4re.sub函数
re.sub()函数用于替换匹配项。
re.sub(pattern,repl,string,max = 0)
pattern 正则表达式
repl 替换 项
string 匹配的字符串
count 替换的最大次数 缺省值是0 表示替换所有的匹配
返回的字符串是在字符串中用 RE 最左边不重复的匹配来替换。如果模式没有发现,字符将被没有改变地返回。
程序:
import string,re
pattern = '\d'
repl = "!"
s = 'abcdefg'
line = re.sub(pattern,repl,s)
print line
结果:
!!!!!!!!!abcdefg
1.5正则表达式修饰符 - 可选标志
我们来说说什么是标志位:
正则表达式可以包含一些可选标志修饰符来控制匹配的模式。修饰符被指定为一个可选的标志。多个标志可以通过按位 OR(|) 它们来指定。如 re.I | re.M 被设置成 I 和 M 标志:
程序:
import string,re
pattern = '[Aa][Bb][Cc][Dd]'
s = 'AbCd'
if re.match(pattern,s):
line = re.match(pattern,s)
print line.group()
结果:
AbCd
上面程序可以通过选择标志位来实现:
import string,re
pattern = 'abcd'
s = 'AbCd'
if re.match(pattern,s,re.I):
line = re.match(pattern,s,re.I)
print line.group()
结果;
AbCd
1.6re.compile函数
使用re的一般步骤是先使用re.compile()函数,将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。
程序:
import string,re
pattern = re.compile('\d+')
s = 'aabbccdd'
if pattern.match(s):
line = pattern.match(s)
print line.group()
结果:
11223344
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13