
做大数据真的能赚钱吗
于IT业内,大数据之火热程度,似乎无出其右者。当然,在其真正爆发前夜,也应该适时泼盆冷水。
谁能接触到数据
以我来形容中国大数据产业,可称“蒙面狂奔”四字。在没有思考清晰盈利模式之时,已蒙面狂奔,绝尘而去。
国内冠以大数据之名的企业数以千计,但细分其专注领域,大致可归属三类:其一,平台型企业,例如华为、星环科技、浪潮、新华三等;其二,工具型企业,例如在数据采集、数据分析、数据清洗、数据可视化等领域中的海量数据、帆软软件、明略数据等;其三,应用型企业,例如百分点,以及国内诸多行业方案商多属于此类型。
不需否认,大数据已在国内诸多行业领域展现出其价值,但深究典型案例,应远未如媒体宣传中显著。为何?有资格被称为大数据企业,取决于两个先要条件:其一,掌握或接触到用户数据;其二,有能力为用户提供数据服务。
先观察首要条件,大数据企业能否掌握,或接触到用户数据。答案:很难。除互联网公开数据之外,第三方能接触到的数据资源着实有限。以IT方案商为例,此前其以为用户设计、实施行业应用软件为主营业务,理论上距离数据最近,但就如建筑商,建设了广厦千万间,建设了条条大路通罗马,也不能掌握居民和车辆信息一样。方案商实施了行业应用软件,其中也承载了海量价值数据,但这并不等同于能接触到数据。
退一步说,在企业意识到数据也是资产,数据也能创造价值后,其正急需寻找数据服务商,或数据运营商。而能够承担此角色者,IT方案商应为首选。原因?方案商为企业用户提供了十余年IT服务,多少会产生些信任度,从IT服务,延伸到数据服务,应为顺其自然。
而问题又由此而来,大数据真的有用吗?实施了铁路车辆检修大数据系统,工人手中使用了几十年敲敲打打的“小铁锤”就能退休?实施了金融风险管控大数据系统,其结论是否能直接自动导入金融机构业务流程,而无需人工干预?答案基本否定。
原因在于,大数据应用服务商即使能获得用户数据,也极其有限、极其不全面。以城市交通信息为例,此类通常掌握在20余部门手中,方案商几乎不可能全面融合此类数据。而基于不全面的、错误的数据源,也就不可能推导出正确,有决策价值的结论。
做大数据真的能赚钱吗?
当然,基于局部数据,也仍有可能建设出经典的大数据案例。但大数据项目真的赚钱吗?未必。在诸多大数据企业中,融资进度大多在B轮和C轮之间,尚没有一家企业完成D轮融资。也就是说,距离赚钱尚早。
而细分技术领域,首先,大数据工具类企业业务模式相对简单,其只是产业链中的一环,实现盈利相对容易。其次,大数据平台型企业,其盈利模式比较复杂。单纯依靠销售大数据平台几乎不可能产生经济效益,而基于不同的业务出身,其业务模式又可分化为三个流派,一类企业希望以大数据平台带动底层硬件产品销售;而另一类企业,通过提供支持标准的SQL接口,依靠提供数据服务实现盈利。当然,第三类企业比较“野蛮”,希望通过数据,或基于用户数据的服务直接变现。
而除此之外,业务模式更为“枯燥”的是大数据应用类企业。通常行业方案商的大数据业务范畴包括:数据获取、整合、治理、应用和展现等,其中尤以数据治理最苦最累,在大数据项目中50%~60%的工作量也集中于此,不要忽悠什么人工智能、深度学习能解决此类问题,基本还属于纸上谈兵的阶段。
问题由此而来,脏活累活总还是要有人干。配备10名数据科学家不能算多吧!月薪1万元要也不算苛刻吧!如此算下来,稍有实力的方案商大数据部门,年均人力成本就应在250万元以上。250万元?要做多少大数据项目,而且前提是要保证每个项目间要有很好地时间衔接,还要保证每个项目的能力需求都要与数据科学家的专长技能相匹配。
同时,与云计算不同,云计算考验方案商纯IT方面能力,而大数据项目则需要方案商数据科学家与行业团队,以及用户业务专家紧密结合,合作建立基于应用场景的数据分析模型。由此,每个项目的成功均需具备“天时、地利、人和”。也就是说,单个大数据项目的定制化程度相对较高,达到50%~40%,项目间很难具有可复制性,方案商也因此较难建立成熟的大数据项目盈利模型。
但最后还需说一句,形容中国大数据产业为“蒙面狂奔”,也许言过其实,但诸多桎梏确实摆在眼前。不管是依靠数据服务,还是行业应用定制,中国大数据产业仍需极大的人力消耗,成熟的盈利模型尚未建立。“蒙面”是现状,也是必然阶段,但衷心希望中国大数据企业再“狂奔”一两年之后,面纱终能被一缕清风揭去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29