京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据市场现状综述
大数据计算和分析系统作为一种计算机科学发展到一定阶段的必然产物已经吸引了各行各业的关注,学术界和业界都已经参与到大数据分析系统的构建中来,越来越多的公司开始拥有或租用数据分析平台。大数据分析技术为从海量的数据中挖掘有价值的信息提供了可能性。
国外各式各样的网络服务商、软硬件服务商几乎都投入到了云计算、云服务,这说明面对每年不断增长的海量数据,各大企业都希望能够对这些数据加以利用,以适应大数据时代的步伐。而云计算、云服务的商业价值也由此可见一斑,各大公司都想从中分一杯羹。
“大数据”时代,在选择应用互联网等高新技术的那一刻开始,用户在自觉不自觉的情况下就已经把很大一部分个人信息放在“光天化日”之下。每一次面对网站/ 应用程序,需要填写邮箱、密码等信息,以及需要阅读的那一长串的用户协议时,关于隐私权的那一小方块文字,就算有意自我保护,但也很难权衡。不管是Google,Facebook,Amazon还是国内BAT三大巨头,爆炸式增长的信息, 从“分享(Sharing)”到“个性(Personalization)”的趋势呈现,互联网企业所掌握的数据基本上涵盖了大多数人生活的绝大一部分。在过去的互联网发展中, 更多的关注是如何利用互联网平台,收集更多的数据;而发展至今,面对已然收集到位的海量信息,如何利用这些数据本身,不仅成为了一个商业模式的判断,同样也是一个社会道德的判断,甚至在某种意义上成为相应的行业乃至法律规范。
中国的大数据市场,最好应该由国内公司来控制,这就要求我们快速提升自我的数据存储、数据分析和对用户提供云服务的能力。让本国的市场,由本土企业最大程度的掌控。
中小企业medium-size enterprise(SEMs)是促进我国社会经济飞速发展的中流砥柱,是我国经济稳定和快速发展的极其重要的因素。就目前形势而言,它与大型企业相比较来看,中小企业随着企业规模的不断增大,其管理手段却跟不上企业发展壮大的步伐,管理层次产生的问题陆续凸现出来。于中小企业而言,在大数据时代到来之际信息被价值化势在必行,但是目前效果却不尽如人意。追根究底,主要原因是中小企业资金有限,技术人才匮乏。早期存在的数据挖掘产品目前已经很难再满足中小企业的信息化需求。向企业提供数据挖掘云服务的模式能够满足中小企业信息被价值化的需求并帮助企业做出正确的决策。
操作系统软件产品的开发和研究技术为基础的云计算服务的发展提供了前期的技术支持。在基于云计算服务的软件产品和服务器系统的技术,中国已经突破EB的数据存储系统级硬件和软件技术支持,并同时支持亿级的数据处理任务。与此同时,互联网企业在大规模云服务操作系统取得了很大的突破。国家也及将很多城市确立为中国云计算服务创新发展试点,例如政治中心北京、经济中心上海、经济中心深圳和一些经济和科技发展比较快的城市例如杭州和武汉。
武汉泰迪智慧科技公司立足自主研发,通过不断的技术创新,拥有完全自主知识产权,意在打造一个全方位的质量服务器,能完全满足在互联网行业从超级计算机应用到普通PC服务器的高校、金融、医疗等行业需求的用户,公司自主研发的AInspir分布式机器学习平台就是一个通用的大数据处理分析平台。平台应用了Hadoop技术以支持海量数据的快速处理与运算,同时通过将常用的数学模型集成到平台上,让用户可以自由建模,处理数据也变得方便快捷。
阿里云在2013年对"飞天"平台推出了一系列举措。包括低口槛进入云战略,支持一些新的服务平台的开发者。从产品、价格、服务几方面与第H方合作,打破传统的商业模式,从用户思维至上,创新的云服务,云计算的角度建立一个更健康的生态系统。2013阿里云推出"飞天5K集群"项目取得重大成功。
百度MapReduce(BMR),百度的MapReduce提供云端托管的全找Hadoop/Spark/HBase服务,助力客户快速具备海量数据分析和挖掘能力。
华为坚持弹性云计算服务,如引进FusionCloud云战略,云数据中心,云计算产品,云服务解决方案的概念。"信息通信技术的硬件和软件基础设施,顶层设计咨询服务和第H方应用程序智能城市共同发展"是华为企业业务的三个主要方向,基于云计算的数据中心、,实现"云-管-端"分层结构,可以构建面向未来的架构的城市。
国内这些云服务平台绝大部分是为了实现自身公司的商业化战略应运而生的。提供云计算云服务的技术层出不穷,在经过大量的技术调研之后发现,基于Hadoop的大数据平台是所有大数据技术框架耗成本比较小的方法,它以-种可靠(reliable)、高效(efficient)、可伸缩(adjustable)的方式进行数据处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01