京公网安备 11010802034615号
经营许可证编号:京B2-20210330
税务领域大数据如何应用
一 、税务大数据产生背景
1.金税工程三期的发展
"金税工程"三期属于国家级信息系统工程,统一全国国地税征管系统,搭建统一纳税服务平台,实现全国税收数据大采集。金税三期2013年部分地区试点,2016年底前全国上线,为税改提供强大的数据支持。
2.互联网+税务的推动
在目前"互联网+"时代背景下,云计算、人工智能、GigData、互联网、物联网等已成为当下行业战略资源。
大数据的处理与应用、多方共享,即可加强税局税收征管,同时也可通过数据分析,为纳税人提供更好的创新服务。
3.信息化是时代的需要
虽然我国已迈入信息化管理阶段,但我国税局系统大部分仅为内部共享,不能实现全过打通,甚至部门省市当地国地税均无法实现信息共享,税务信息化的发展,将全国税务系统打通,及时掌握纳税人经济业务和税收的来龙去脉,让偷逃税行为扼杀在摇篮。
二 、税务大数据的意义
1.提升征管效率
通过对纳税人数据的采集,强化大数据分析,纳税人历史行为、最新动态呈现在税务征管管理者面前,从而可以提升征管与服务;经过数据比对与分析,实时监控纳税人三流问题,从而提高纳税人尊从度,防止偷逃税,同时也可作为纳税人信用等级评定基础依据。
2.数据驱动创新
在历史税收信息化来看,税收信息共享没有得到有效利用,如与工商部门信息共享("五证合一"的目的之一),目前通过 Data Sharing ,可以摆脱滞后的传统数据分析,提高对错综复杂数据持续分析,进行风险评估、决策支持、预案制定等,使税务征管、稽查部门保持持续应变与创新能力。 三、大数据的应用
1.互联网+发票
金税三期、新防伪税控系统,将对增值税发票票面信息(包括纳税人名称、数量、单价、税率、税额等)进行全面采集,发票在线开具数据实时传送,离线开票需在规定时间上传,否则导致无法开票。纳税人发票信息采集,税务征管将对发票信息深度分析、挖掘,快速、全面将纳税人经营情况反馈与呈现,切实加强后续管理,防范征管漏洞。
2.电子税局——O2O办税
受电子商务高质量服务的影响,电子税务局上线也形成了线上(Online)受理到线下(Offline)办理的O2O(线上线下)的纳税服务新模式。 四、税务大数据带来的机遇与挑战 1.机遇
Big Data 与"大规模数据"一脉相承,其数据体量、复杂性远超过传统数据。税务数据不再仅仅是处理对象,而是一种资源,甚至可以说是资产。对于庞大的数据系统,数据支持者或提供给决策者来讲,数据魔方、分析模型显得尤为重要,我们需要熟练高效的对动态数据进行自我调整、矫正分析等。
以前,税务征管数据就是"税务信息孤岛",无法给各部门进行交换共享或交叉检查,税务大数据时代的到来,使得涉税信息交换平台和公共信用信息平台互通,政府部门深度信息融合,数据多方比对,差异逐渐发现,征管更加清晰。
2.挑战
平台挑战:由于税务大数据平台建设涉及到多个政府部门,所以税务大数据平台建设、形成大数据解决方案、进行可视化数据分析极具挑战性.........
安全挑战:税务数据信息庞大,如:纳税人报送信息、税务机关掌握信息、其他平台方涉及信息等安全性存在较大隐患.........
人才挑战:应高度重视"互联网+税务"人才培养的重要性,加强系统化培训学习,利用互联网提高征管水平,使用征管过程中能高效对涉水数据搜集、研究、深度挖掘等。
3.税务大数据存在问题
在税局大数据提供便利的同时,涉税数据安全需要得到保障——信息安全政策不完善;
征管软件、系统不统一(征管系统、纳税评估系统、税总软件系统、地方软件系统等)导致信息重复,效率不高——税务大数据整合不到位;
数据运用不彻底、大数据认知不够,仍旧基于传统数据分析处理——大数据思维缺乏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11