
大数据入门你必须知道的关键词
算法与分析法
算法 (Algorithms)-可以完成某种数据分析的数学公式。算法被用于软件处理与分析输入的数据。
分析法(Analytics)–用于发现数据的内在涵义。通过分析,无用杂乱的数据可以转化成有益的结论。这里的重点是数据的影响力,而不是复杂的软件系统。这可能就是为何大家使用数据来完成自己的论述。数据分析有三种不同的类型:
描述性分析(Descriptive Analytics)-把大数据分成小块的信息分析,类似于总结数据所描述的故事。描述性分析不呈现每一组细节和数据,它描述了数据的基本特征,完成从“数据”到“信息”的转化。
预测性分析(Predictive analysis)–大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为。通过使用各种不同的数据集,来识别风险和机遇。预测很难达到100%的准确性,但是它提供了未来趋势的见解。这种预测分析通常包含了数据挖掘,机器学习和统计学。
规范性分析 (Prescriptive Analytics)–不仅要利用“当前和过去的数据”,还加入综合考虑其他影响因素,在对比分析所有可能方案的基础上,提出“可以直接用于决策的建议或方案”。规范性分析实现了从“知识”到“智慧(决定)”的转变。云计算与数据
云计算(Cloud computing)– 云计算可用于任何时间与地点。它是构建在网络上的分布式计算系统,数据文件是存储于网络(即云端)而非硬盘。
数据库即服务(Database-as-a-Service)–部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web Services)。DaaS为公司们提供了高效快捷的获取数据的方法,也自2015年来在市场中占有着举足轻重的作用。
数据挖掘(Data mining)–从数据集中发掘特定模式或信息的过程。数据挖掘着重利用大数据作分析,过程也利用了人工智能,机器学习或统计学等知识。
黑暗数据(Dark Data)-黑暗数据是被收集以及处理的商业信息,但从未被投入真正的用处。黑暗数据可以被理解为在黑暗中等待被分析的信息。很多公司甚至没有意识到他们所有的潜在数据。
数据库(Database)–一个以某种特定的技术来存储数据集合的仓库,它包含了表格,图等。数据库也可被并入数据库管理系统[Database Management System],软件用于数据分析。
物联网的世界
Hadoop (Apache Hadoop)–一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。Hadoop是一个由Apache基金会所开发的分布式系统基础架构,充分利用集群的威力进行高速运算和存储。
物联网(Internet of Things)–在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连,例如你的手机,可穿戴设备或车等。物联网包含了大量数据,使它在数据科学中有着重要的地位。除了物联网以外,我们还有:
万物网(Internet of Everything):将人,程序,数据和事物结合一起使得网络连接变得更加相关,更有价值。万物网将信息转化为行动,给企业,个人和国家创造新的功能,并带来更加丰富的体验和前所未有的经济发展机遇。
机器学习(Machine learning)–人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。机器学习算法是一类从数据中自动分析获得规律并对未知数据进行预测的算法。它使计算机具有智慧,不需要科学家的额外时间去优化性能而发展。
MapReduce– MapReduce是面向大数据并行处理的计算模型、框架和平台。这个模型可被分为两个不同的概念,Map(映射)函数用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
神经网络(Neural Network)-人工神经网络模型是模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。它预测了不同的数学函数,依靠系统的复杂程度处理复杂信息。深度学习源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。
NoSQL– NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,提倡运用非关系型的数据存储。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目,因此不能了解到事物的真正本质,而大数据时代的来临,一切真相将会展现在人们面前。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08