
大数据下移动游戏如何进行精细化运营
根据维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。毫无疑问,现在正处于大数据的时代下。而在这样的背景下,大数据对移动游戏有哪些影响呢?开发者们又应该如何通过大数据进行精细化运营从而提高游戏的收入和延长生命周期,有以下的看法:
大数据下玩家信息获取成本降低成本降低,开发者竞争激烈
移动游戏和端游页游最大的区别就是有了渠道的整合。在端游时代,并没有专门的渠道把游戏放在一起,玩家可能只知道CF或者是DNF,但是却很难知道这些游戏的竞品有哪些,在哪里。但是到了移动游戏或者说移动互联网时代,由于有了像AppStore,GooglePlay和国内众多渠道,游戏或者应用就会被放在一起比较。这样就导致了两个结果,第一,用户很清楚自己有多少个选择,并且会知道每一款游戏或者应用的评分是怎么样的。第二,用户的切换成本会降低了许多。举个例子,在PC时代,大家看新闻都会惯性地上同一个门户网站,并没有人会告诉你各个门户的排名和得分之类的信息,在同一个垂直领域并没有知道他们的排名是怎么样的。但在移动互联网时代,这个格局已经明显的改变了,开发者的游戏或者应用是和很多开发者一起去竞争。特别是在App Store上,是和全球的开发者竞争。
其次,随着信息的扁平化,全球信息的交流已经越来越快,时间差也渐渐减少,可能大城市发生的事情一分钟之后整个小山村里面的人都知道了。如果说10年前还是赚的是信息不对称的钱的话,随着大数据、信息化的时代到来,开发者游戏或者应用要脱颖而出,就变得非常困难。
玩家离开游戏主因有二:挫败感与孤独感
即使玩家已经进入游戏,但是也是极易流失的。而有腾讯相关人士曾透露,玩家离开游戏主因有二:挫败感与孤独感。
1.挫败感
挫败感是影响用户留存的最重要因素。腾讯曾通过对“失败数”、“连续失败数”、“任务完成情况”等这些数据进行分析,发现一旦这些数值超过一定的量,玩家离开游戏的流失率就会大大增加。通过对数据的研究,发现用户通过率比游戏设定的时候低的时候,这个时候就可以通过降低游戏的难度来提升用户留存。
对于那些因为挫败感离开了游戏的用户,开发者可以通过对消息的推送或者运营的活动把玩家拉回到游戏里面来。对于那些摇摇欲坠的用户,可以送他们一些道具或者礼包,帮助他通过面对的困难。所以这个就需要数据的支持,针对每一个用户,选择适合他们的运营,做精细化运营。
2.孤独感
现在的移动游戏总有一种孤独感。同样是网游,在端游时代,类似公会、国战、帮派这些玩法,大家用Q群或者YY在相互联系,大家的联系非常非常高。每一款游戏到中后期运营最重要的一定是社交因素。到目前为止,移动游戏在社交这方面还没有突破性的进展,现在的社交元素只是浅层次的社交。在端游时代,有很多中重度玩家,每天都和另外的玩家一起去打副本、PvP,这样才是最有效的留住玩家的方法。
社交感差导致玩家的孤独感,才是移动游戏平均寿命比较短的原因。一些好的端游和页游寿命长达10年,而在移动游戏时代,游戏寿命能有半年有已经非常不错了,很多开发商把游戏做出来捞一笔就走了。那些寿命比较长的游戏,玩家都是有感情在里面的,主要是里面有一群好的兄弟,这些才是大家留在一款游戏里面的最重要因素。现在的手游也是比较欠缺的。通过大数据统计,玩家的好友数量和在游戏上的时常是成正比的,好友数量越多,玩家在游戏里面的时间是越长的。
大数据的作用在于对未来的预测而非过去的总结
通过大数据的分析,开发者可以知道玩家的心理,知道哪些人会为你的游戏充值,埋单,
可以很清楚每一玩家喜欢那种类型的游戏,曾经在那款相同类型的充值。比如说一款游戏的付费率是1%,那剩下的99%的玩家里面,有谁是有欲望付费的,这些大数据能告诉你。哪20%的玩家最有可能付费,那些已经在同类型的游戏里面已经付过费了,或者从游戏里面的表现来说很有付费的意愿,这些都应该是要重点关注的玩家。这些玩家怎么才能让他们掏腰包,这个时候就需要你给他们一个付费的理由了,这个就是大数据的作用了。
大数据重要的不是提供给你历史和现状,而是通过分析做出对未来的预测。对历史数据的分析得出来的就是结果,已经没有办法改变了。但是大数据是通过的数据和研究,得出未来用户或者玩家的行为,这个才是最重要的。只有对未来的预测,才能更好的进行运营活动,甚至是修改游戏,这样才能留住玩家。这个就是大数据对游戏的最大作用,逆转未来,留住要走的玩家,并让他们把钱留下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08