
政务大数据需坚持的三个基本方向
大数据已经渗透到工业和商业领域的各个方面,成为影响生产的一个重要因素”,大数据的应用涉及经济、文化、教育、医疗、公共管理等各行各业。正是由于大数据的广泛应用及其背后蕴藏的巨大潜力和价值,许多国家纷纷将“大数据”的建设和发展上升为国家战略,积极推动大数据应用的发展。
在全球范围内,运用大数据推动智慧政务正成为趋势,智慧政务以大数据分析为核心,不仅是因为相关数据量大、类型多,更重要的是,对海量数据的深度挖掘与多维剖析可以创造出更大的公共价值,有利于更准确地掌握政务动态变化,发现公众新需求,有效提升政务服务能力。
大数据不仅仅是政府管理的一种新手段或新工具,它还将带来政府管理改革的一个全新阶段。随着大数据在政府管理和公民社会生活的深入,政府部门内部及其与公民社会的关系将被重新建构。技术、组织、关系和行为的再造呼唤全新的管理模式的出现,这种新的管理模式就是数字时代的治理。这种创新的治理模式不只是政府内部自身的数字化变革,还将是广泛深远的社会变革和管理方式的创新。从这个层面看,由大数据应用带来的数字治理模式创新将成为政府管理改革的全新阶段。
一、整体性政府
整体性政府强调政府内部须实现机构、部门、专业、层级等之间的协调整合,以更好地解决公众需求,避免因政府内部矛盾冲突而造成的公共服务效率低下。单一数据源已越来越难以满足应对很多政策领域日益复杂问题的需求,未来将会出现越来越多跨数据集的联系,且在数字时代,政府治理的关键在于整合多数据源的公共管理模式,因此,推动政务大数据应用首先应坚持整体性政府方向,推动政府间的数据共享与业务协同。
相比商业机构而言,政府在推进大数据方面所面临的挑战更加尖锐,因为他们必须在遵从安全性和相关法规的前提下,不断打破部门孤岛来推进数据的集成。
政府部门不仅要应对多数据源和不同格式数据的集成分析等大数据领域通行问题,还要面对很多政府部门特有的挑战和问题。但对推进政务大数据应用而言,无论是对政府自身监管行为所产生的大数据,还是对公民在社交媒体或其他网络平台上所产生的行为数据进行采集和分析,都可能促进政府机构中跨层级的“智能中心”的建立。
二、透明化政府
大数据应用建立在掌握数据的基础上,以海量数据为前提,政务大数据的发展往往离不开政府开放数据,这使得政府的透明度大大提高。数据的开放可以让政府公职人员和民众一起参与进来,解决政府无法完成的、棘手的问题,更广泛地发挥公众力量,借助大数据平台更好地进行社会管理。随着政府组织的行为及其与公众的交互越来越数据化,在政府自身内部系统中产生的各类大数据也为透明性政府建设提供了巨大潜力。在推进政务大数据应用中,政府的监管方式应不断创新,更加透明。随着政府组织越来越“成为”一种前台的网络存在和后台的信息处理系统,大数据也将更有力地促进上述整体性政府的最终形成。
三、服务型政府
大数据可以促进政府公共服务水平的提升,有利于服务型政府的建立。在大数据时代,公众可以更好地参与到政府工作之中,与政府分享信息,形成政府和公众共同参与的政务决策机制。社会公众可以通过社交媒体、公开出版物、博客等渠道分享他们的意见,大数据分析技术可以处理这些非结构化数据,并将更好的服务和方案传递给所需的客户群体。因此,在大数据背景下,任何政府都可以藉由政务大数据的采集、分析和利用,不断推动优化政府自身运作流程和服务效能。而且,政务大数据分析是政府理解公民行为、解释政策与公共服务优劣的良好手段,也是政府决策者理解公众需求与偏好的工具,以更好地理解人们对于公民参与的积极性,对立法变动的态度,以及对政府公共服务的需求。此外,大数据还可有效改进政府绩效管理方法,促进公共服务的提升。以往政府部门的绩效管理往往是滞后的,因为其主要依赖一些事后的指标来评估政府工作的效果。未来,政府管理部门应当更多依靠实时性数据来提升政府管理效能。
大数据作为变革的手段,将引领政务服务转型升级。促成政务服务理念转变和工作流程再造,重塑政务服务工作机理与生态,对相关数据进行有效整合关联,深挖和探究更利企便民的服务方式,由粗放式服务转向精准化定制服务,变被动服务为主动服务,更好地满足公众个性化、定制化及多样化的政务服务需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08