京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python解决网站的反爬虫策略总结
本文详细介绍了网站的反爬虫策略,在这里把我写爬虫以来遇到的各种反爬虫策略和应对的方法总结一下。
从功能上来讲,爬虫一般分为数据采集,处理,储存三个部分。这里我们只讨论数据采集部分。
一般网站从三个方面反爬虫:用户请求的Headers,用户行为,网站目录和数据加载方式。前两种比较容易遇到,大多数网站都从这些角度来反爬虫。第三种一些应用ajax的网站会采用,这样增大了爬取的难度(防止静态爬虫使用ajax技术动态加载页面)。
1、从用户请求的Headers反爬虫是最常见的反爬虫策略。
伪装header。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名[评论:往往容易被忽略,通过对请求的抓包分析,确定referer,在程序中模拟访问请求头中添加]。对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。
2、基于用户行为反爬虫
还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。[这种防爬,需要有足够多的ip来应对]
(1)、大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。可以专门写一个爬虫,爬取网上公开的代理ip,检测后全部保存起来。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib中很容易做到,这样就能很容易的绕过第一种反爬虫。
编写爬虫代理:
步骤:
1.参数是一个字典{'类型':'代理ip:端口号'}
proxy_support=urllib.request.ProxyHandler({})
2.定制、创建一个opener
opener=urllib.request.build_opener(proxy_support)
3a.安装opener
urllib.request.install_opener(opener)
3b.调用opener
opener.open(url)
用大量代理随机请求目标网站,应对反爬虫
#! /usr/bin/env python3.4
#-*- coding:utf-8 -*-
#__author__ == "tyomcat"
import urllib.request
import random
import re
url='http://www.whatismyip.com.tw'
iplist=['121.193.143.249:80','112.126.65.193:80','122.96.59.104:82','115.29.98.139:9999','117.131.216.214:80','116.226.243.166:8118','101.81.22.21:8118','122.96.59.107:843']
proxy_support = urllib.request.ProxyHandler({'http':random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[('User-Agent','Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.87 Safari/537.36')]
urllib.request.install_opener(opener)
response = urllib.request.urlopen(url)
html = response.read().decode('utf-8')
pattern = re.compile('<h1>(.*?)</h1>.*?<h2>(.*?)</h2>')
iterms=re.findall(pattern,html)
for item in iterms:
print(item[0]+":"+item[1])
2)、对于第二种情况,可以在每次请求后随机间隔几秒再进行下一次请求。有些有逻辑漏洞的网站,可以通过请求几次,退出登录,重新登录,继续请求来绕过同一账号短时间内不能多次进行相同请求的限制。[评论:对于账户做防爬限制,一般难以应对,随机几秒请求也往往可能被封,如果能有多个账户,切换使用,效果更佳]
3、动态页面的反爬虫
上述的几种情况大多都是出现在静态页面,还有一部分网站,我们需要爬取的数据是通过ajax请求得到,或者通过Java生成的。
解决方案:Selenium+PhantomJS
Selenium:自动化web测试解决方案,完全模拟真实的浏览器环境,完全模拟基本上所有的用户操作
PhantomJS :一个没有图形界面的浏览器
获取淘宝妹妹的个人详情地址:
#! /usr/bin/env python
# -*- coding:utf-8 -*-
#__author__ == "tyomcat"
from selenium import webdriver
import time
import re
drive = webdriver.PhantomJS(executable_path='phantomjs-2.1.1-linux-x86_64/bin/phantomjs')
drive.get('https://mm.taobao.com/self/model_info.htm?user_id=189942305&is_coment=false')
time.sleep(5)
pattern = re.compile(r'<div.*?mm-p-domain-info">.*?class="mm-p-info-cell clearfix">.*?<li>.*?<label>(.*?)</label><span>(.*?)</span>',re.S)
html=drive.page_source.encode('utf-8','ignore')
items=re.findall(pattern,html)
for item in items:
print item[0],'http:'+item[1]
drive.close()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27