京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据挖掘“(Data Mining)又被称为“数据中的知识发现”(KDD),顾名思义,也就是通过数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示等一些列步骤,对数据进行分类、聚类,发现其中的关联关系或者离群点,来发现新的知识。
1、数据类型
上世纪70-80年代,“数据库”技术的发展而产生的数据库管理系统,方便用户进行关系型的数据管理,用户可以进行SQL查询等数据操作,关系型数据库实际上就是二维表;然而对于大型的跨地域公司,要汇总各个地方数据库却不容易,于是就产生了“数据仓库”,数据仓库将数据库的数据进行整合,下钻(drill down)和上卷(roll up)操作可以得到详细信息和汇总信息,由此诞生了高级数据库系统和高级数据分析,数据仓库可以看做是数据立方体(Data Cube)。20世纪90年代,万维网迅速发展,各式各类的数据类型出现,时间序列数据、超文本和多媒体数据(图片、视频、声音),空间数据(地图),网状数据(社会关系网络)等各种复杂的非结构化数据,总之,可以大致的将数据挖掘的数据类型分为以下几类:
(1)数据库 数据
数据库系统,又称为数据库管理系统(DBMS),是一种关系型数据库,又不同的表组成,每一个表有一个唯一的“关键字标识”来表示一个对象,每个对象有又若干属性,每个对象及其属性构成一个“元组”。
对于一个学生关系表,学号是唯一的“关键字标识”,姓名、性别、院系、年级都是属性,每一行都是一个“元组”。
(2)数据仓库 数据
数据立方体
数据仓库的数据格式可以看做是一个数据立方体,是一个多维的数据结构,如图有三个维度,分别是时间维、机构维、指标维。对数据立方体进行切片可以得到截面数据,竖直方向切片可以得到周一(Monday)三个地方借记卡情况。
下钻是对数据的具体化,如对时间维下钻,可以得到周一10:00至14:00的四个小时内的借记卡使用情况;
上卷又称上钻,是对数据汇总,对机构维上卷,可以得到中国借记卡使用情况。
(3)事务数据
事务数据库数据中每个记录是一个事务,如淘宝的一次订单。
(4)其他数据
数据库一般是结构化的数据,还有许多非结构化数据。如序列数据(时间序列、生物序列等),空间数据(地图),工程设计数据(建筑结构设计),超文本和多媒体数据、网状数据等。
2 数据挖掘的步骤
(1)数据清理:消除噪音数据
(2)数据集成:多种数据组合一起
(3)数据选择:选择相关数据
(4)数据变换:汇总等操作将数据变换成适合挖掘的数据
(5)数据挖掘:对数据进行操作
(6)模式评估:根据某种模式来评估其价值
(7)知识表示:可视化表现
3 数据挖掘模式
(1)类和概念:特征化与区分
对数据汇总和分类,考察其具有什么样的特征。
(2)挖掘频繁模式:关联和相关性
频繁出现的序列:出现次数最多的事件;频繁出现的子序列:事件之间的关联性,如购买A的情况下再购买B的模式
(3)预测分析的分类和回归
分类:决策树、神经网络
回归:相关性描述和预测,描述解释变量与被解释变量之间的相关性,并构造数学模型来预测被解释变量。
(4)聚类
根据“最大化类内相似性,最小化类间相似性”的原则进行聚类和分组。
(5)离群点
异常的值,有的时候需要抛弃异常值,但有时通过异常值可以发现问题,如欺诈行为。
4 数据挖掘相关内容
(1)统计学
统计学中数值描述(如均值、中位数、众数、方差,柱状图、散点图等),回归分析(线性回归、非线性回归、一元回归、多元回归),离散型和连续性数据的概率分布、描述性统计和推断性统计都和数据挖掘相关。
(2)机器学习
机器学习是用数据对机器不断训练以来提高机器性能,类似条件反射。比如机器最开始只能识别“中华田园犬”,“犬”类库中只有中华田园犬,通过一次又一次学习,将萨摩耶、吉娃娃、哈士奇、泰迪都纳入“犬”库,机器就知道了这些也是“犬”。随着图片和种类的增加,机器对犬的识别度也逐渐增加。
(3)数据库和数据仓库
数据库和数据仓库本身就是用于数据的管理,其包含的海量数据可以用来做OLTP,OLAP。
(4)信息检索
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27