
“数据挖掘“(Data Mining)又被称为“数据中的知识发现”(KDD),顾名思义,也就是通过数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示等一些列步骤,对数据进行分类、聚类,发现其中的关联关系或者离群点,来发现新的知识。
1、数据类型
上世纪70-80年代,“数据库”技术的发展而产生的数据库管理系统,方便用户进行关系型的数据管理,用户可以进行SQL查询等数据操作,关系型数据库实际上就是二维表;然而对于大型的跨地域公司,要汇总各个地方数据库却不容易,于是就产生了“数据仓库”,数据仓库将数据库的数据进行整合,下钻(drill down)和上卷(roll up)操作可以得到详细信息和汇总信息,由此诞生了高级数据库系统和高级数据分析,数据仓库可以看做是数据立方体(Data Cube)。20世纪90年代,万维网迅速发展,各式各类的数据类型出现,时间序列数据、超文本和多媒体数据(图片、视频、声音),空间数据(地图),网状数据(社会关系网络)等各种复杂的非结构化数据,总之,可以大致的将数据挖掘的数据类型分为以下几类:
(1)数据库 数据
数据库系统,又称为数据库管理系统(DBMS),是一种关系型数据库,又不同的表组成,每一个表有一个唯一的“关键字标识”来表示一个对象,每个对象有又若干属性,每个对象及其属性构成一个“元组”。
对于一个学生关系表,学号是唯一的“关键字标识”,姓名、性别、院系、年级都是属性,每一行都是一个“元组”。
(2)数据仓库 数据
数据立方体
数据仓库的数据格式可以看做是一个数据立方体,是一个多维的数据结构,如图有三个维度,分别是时间维、机构维、指标维。对数据立方体进行切片可以得到截面数据,竖直方向切片可以得到周一(Monday)三个地方借记卡情况。
下钻是对数据的具体化,如对时间维下钻,可以得到周一10:00至14:00的四个小时内的借记卡使用情况;
上卷又称上钻,是对数据汇总,对机构维上卷,可以得到中国借记卡使用情况。
(3)事务数据
事务数据库数据中每个记录是一个事务,如淘宝的一次订单。
(4)其他数据
数据库一般是结构化的数据,还有许多非结构化数据。如序列数据(时间序列、生物序列等),空间数据(地图),工程设计数据(建筑结构设计),超文本和多媒体数据、网状数据等。
2 数据挖掘的步骤
(1)数据清理:消除噪音数据
(2)数据集成:多种数据组合一起
(3)数据选择:选择相关数据
(4)数据变换:汇总等操作将数据变换成适合挖掘的数据
(5)数据挖掘:对数据进行操作
(6)模式评估:根据某种模式来评估其价值
(7)知识表示:可视化表现
3 数据挖掘模式
(1)类和概念:特征化与区分
对数据汇总和分类,考察其具有什么样的特征。
(2)挖掘频繁模式:关联和相关性
频繁出现的序列:出现次数最多的事件;频繁出现的子序列:事件之间的关联性,如购买A的情况下再购买B的模式
(3)预测分析的分类和回归
分类:决策树、神经网络
回归:相关性描述和预测,描述解释变量与被解释变量之间的相关性,并构造数学模型来预测被解释变量。
(4)聚类
根据“最大化类内相似性,最小化类间相似性”的原则进行聚类和分组。
(5)离群点
异常的值,有的时候需要抛弃异常值,但有时通过异常值可以发现问题,如欺诈行为。
4 数据挖掘相关内容
(1)统计学
统计学中数值描述(如均值、中位数、众数、方差,柱状图、散点图等),回归分析(线性回归、非线性回归、一元回归、多元回归),离散型和连续性数据的概率分布、描述性统计和推断性统计都和数据挖掘相关。
(2)机器学习
机器学习是用数据对机器不断训练以来提高机器性能,类似条件反射。比如机器最开始只能识别“中华田园犬”,“犬”类库中只有中华田园犬,通过一次又一次学习,将萨摩耶、吉娃娃、哈士奇、泰迪都纳入“犬”库,机器就知道了这些也是“犬”。随着图片和种类的增加,机器对犬的识别度也逐渐增加。
(3)数据库和数据仓库
数据库和数据仓库本身就是用于数据的管理,其包含的海量数据可以用来做OLTP,OLAP。
(4)信息检索
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13