
“数据挖掘“(Data Mining)又被称为“数据中的知识发现”(KDD),顾名思义,也就是通过数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示等一些列步骤,对数据进行分类、聚类,发现其中的关联关系或者离群点,来发现新的知识。
1、数据类型
上世纪70-80年代,“数据库”技术的发展而产生的数据库管理系统,方便用户进行关系型的数据管理,用户可以进行SQL查询等数据操作,关系型数据库实际上就是二维表;然而对于大型的跨地域公司,要汇总各个地方数据库却不容易,于是就产生了“数据仓库”,数据仓库将数据库的数据进行整合,下钻(drill down)和上卷(roll up)操作可以得到详细信息和汇总信息,由此诞生了高级数据库系统和高级数据分析,数据仓库可以看做是数据立方体(Data Cube)。20世纪90年代,万维网迅速发展,各式各类的数据类型出现,时间序列数据、超文本和多媒体数据(图片、视频、声音),空间数据(地图),网状数据(社会关系网络)等各种复杂的非结构化数据,总之,可以大致的将数据挖掘的数据类型分为以下几类:
(1)数据库 数据
数据库系统,又称为数据库管理系统(DBMS),是一种关系型数据库,又不同的表组成,每一个表有一个唯一的“关键字标识”来表示一个对象,每个对象有又若干属性,每个对象及其属性构成一个“元组”。
对于一个学生关系表,学号是唯一的“关键字标识”,姓名、性别、院系、年级都是属性,每一行都是一个“元组”。
(2)数据仓库 数据
数据立方体
数据仓库的数据格式可以看做是一个数据立方体,是一个多维的数据结构,如图有三个维度,分别是时间维、机构维、指标维。对数据立方体进行切片可以得到截面数据,竖直方向切片可以得到周一(Monday)三个地方借记卡情况。
下钻是对数据的具体化,如对时间维下钻,可以得到周一10:00至14:00的四个小时内的借记卡使用情况;
上卷又称上钻,是对数据汇总,对机构维上卷,可以得到中国借记卡使用情况。
(3)事务数据
事务数据库数据中每个记录是一个事务,如淘宝的一次订单。
(4)其他数据
数据库一般是结构化的数据,还有许多非结构化数据。如序列数据(时间序列、生物序列等),空间数据(地图),工程设计数据(建筑结构设计),超文本和多媒体数据、网状数据等。
2 数据挖掘的步骤
(1)数据清理:消除噪音数据
(2)数据集成:多种数据组合一起
(3)数据选择:选择相关数据
(4)数据变换:汇总等操作将数据变换成适合挖掘的数据
(5)数据挖掘:对数据进行操作
(6)模式评估:根据某种模式来评估其价值
(7)知识表示:可视化表现
3 数据挖掘模式
(1)类和概念:特征化与区分
对数据汇总和分类,考察其具有什么样的特征。
(2)挖掘频繁模式:关联和相关性
频繁出现的序列:出现次数最多的事件;频繁出现的子序列:事件之间的关联性,如购买A的情况下再购买B的模式
(3)预测分析的分类和回归
分类:决策树、神经网络
回归:相关性描述和预测,描述解释变量与被解释变量之间的相关性,并构造数学模型来预测被解释变量。
(4)聚类
根据“最大化类内相似性,最小化类间相似性”的原则进行聚类和分组。
(5)离群点
异常的值,有的时候需要抛弃异常值,但有时通过异常值可以发现问题,如欺诈行为。
4 数据挖掘相关内容
(1)统计学
统计学中数值描述(如均值、中位数、众数、方差,柱状图、散点图等),回归分析(线性回归、非线性回归、一元回归、多元回归),离散型和连续性数据的概率分布、描述性统计和推断性统计都和数据挖掘相关。
(2)机器学习
机器学习是用数据对机器不断训练以来提高机器性能,类似条件反射。比如机器最开始只能识别“中华田园犬”,“犬”类库中只有中华田园犬,通过一次又一次学习,将萨摩耶、吉娃娃、哈士奇、泰迪都纳入“犬”库,机器就知道了这些也是“犬”。随着图片和种类的增加,机器对犬的识别度也逐渐增加。
(3)数据库和数据仓库
数据库和数据仓库本身就是用于数据的管理,其包含的海量数据可以用来做OLTP,OLAP。
(4)信息检索
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27