
人工智能+大数据将成为餐饮行业风向标
在互联网繁荣发展的时代,餐饮O2O成为现代餐饮人的谈论热点。如何利用好互联网向大众传递自己的品牌理念,让大众对自己的产品有更深的了解,通过互联网营销手段更好的为顾客服务并促进业务的增长,成为现代餐饮人关注的核心。
根据艾瑞的数据显示,餐饮O2O的市场规模占总餐饮规模比重正在逐渐增大,2015年中国餐饮O2O市场规模为1615.5亿元,占餐饮行业总体比重为5.0%,预计2018年餐饮O2O市场将达到2897.9亿元,市场不可谓不大。
餐饮O2O全服务链成重点
随着近几年出现互联网O2O领域商业的泡沫化,部分餐饮O2O企业对此领域的认同模式、理解发生错误的判断,导致该领域的公司业务不佳的有很多。餐饮O2O是指以餐饮业为基础的O2O经营模式,以传统餐饮业务为基础,借助互联网的方式方法提供服务。归根结底,餐饮O2O其实是餐饮行业信息化的一个过程,O2O前面阶段只是解决了把餐厅的一些基本信息搬上互联网的问题,比如菜单、评价、外卖等,这是远远不够的。真正改变餐饮行业互联网结合的途径来自餐饮全服务链的信息化改造和升级。
未来随着餐饮商户的后端管理争夺战日渐凸显,餐饮O2O将进入下一个纪元——大数据时代。整个营业管理,将通过终端的智能软硬件设备开始实现信息化。比如餐厅的点菜数据,会员管理等等。举个简单的例子就是有一天你去餐厅用手机点餐,你能看到某个菜被点了多少回等等有趣的应用,其背后都是大数据化越来越彻底的原因。
自建O2O平台渐成趋势
与其他第三方O2O平台的最大不同在于,通过专业的平台服务,商户将排队、支付、营销等一系列环节整合集成一体化,搭建自身专属的O2O平台,这是最基本方式。换言之,餐饮商户将自主独立地整合自身的顾客来源,而非依附于第三方O2O平台。餐饮商户可借助平台提供的各类营销工具,制定符合自身需求的解决方案。将顾客真正还给商户,从等位、点餐、支付和会员活动形成一条属于商户自身的场景化O2O闭环。
搭建自己的O2O平台还有一个很重要的优势是,所有的用户消费数据都可以沉淀到自己手中。在以往依赖第三方O2O平台时,用户的消费数据不是真正的沉淀到本地的,在一切以数据为基础的互联网时代,没有自己的数据就谈不上是信息化,大数据化就更无从说起,充其量只能说是自己有一个互联网的出口而已,这对餐饮商户来说并不是一个最好的转型方式。
“人工智能+大数据”是未来风向标
在餐厅向互联网转型的过程中,不得不说的就是最近风头正热的人工智能。提到人工智能,与之相伴的就是大数据,没有大数据的人工智能也无法称为人工智能。我们以前一直在谈大数据,但是对线下大数据没有一个很好的理解。真正的线下大数据是精确化的关系数据,和你建立关系的数据才是有效的数据。这样的大数据首先需要一个系统去吸收数据,对这些数据进行存储加工以后再去利用,没有吸收的过程就没有数据,没有数据也就没有人工智能。
目前,线下领域的大数据领域,掌贝处于领先地位,尤其是涉及到数据处理、数据利用这些问题。没有基于数据的人工智能不是真正的人工智能,掌贝帮助商户提高服务效率并沉淀客户数据,通过加工处理,提供二次营销。对于有技术能力的大数据团队来说,新形势下的线下店铺大数据是全新的领域,而在这个领域当中,掌贝是先行者。
就拿之前提到的全服务链作为例子。目前餐饮业,在没有大数据支撑下的营销大多都是千篇一律的价格战、打折、赠送菜品等等,无法提供针对特定消费者的个性化营销方案,比如,餐厅对会员送的一道菜恰好是这个消费者不喜欢吃的,那么你就无法起到促销的作用,消费者对这样促销活动也会越来越无感。
所谓个性化的营销方案,一定是根据对消费者来餐厅消费行为特征数据的积累与分析,完全根据他的特定需求制定出来的营销方案,通过数据分析,促销、推荐的菜品是有针对性的,一定会深得消费者的喜爱,这样也才能起到促销甚至感动消费者的效果。这些都是人工智能和大数据技术发展的成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28