
R语言与点估计学习笔记(EM算法与Bootstrap法)
一、EM算法
EM算法是一种在观测到数据后,用迭代法估计未知参数的方法。可以证明EM算法得到的序列是稳定单调递增的。这种算法对于截尾数据或参数中有一些我们不感兴趣的参数时特别有效。
EM算法的步骤为:
E-step(求期望):在给定y及theta=theta(i)的条件下,求关于完全数据对数似然关于潜在变量z的期望
M-step(求极值):求上述期望关于theta的最大值theta(i+1)
重复以上两步,直至收敛即可得到theta的MLE。
从上面的算法我们可以看到对于一个参数的情况,EM仅仅只是求解MLE的一个迭代算法。M-step做得就是optimize函数做得事情。对于EM算法,我们也没有现成的求解函数(这个是自然的),我们一样可以通过人机交互的办法处理。
先举一个一元的例子:
设一次实验可能有4个结果,发生概率分别为0.5+theta/4, 0.25-theta/4 ,0.25-theta/4 ,theta/4.其中theta在0,1之间。现进行了197次实验,结果发生的次数分别为:125,18,20,34,求theta的MLE。
计算出theta(i+1)=(195theta(i)+68)/(197theta(i)+144)
为什么是这个结果,请翻阅王兆军《数理统计讲义》p43-p44
我们用简单的循环就可以解决这个问题,程序及结果如下:
>fun<-function(error=1e-7){
+theta<-0.5
+k<-1
+while(T){
+k<-k+1
+theta[k]<-(159*theta[k-1]+68)/(197*theta[k-1]+144)
+if(abs(theta[k]-theta[k-1])<error) break
+}
+list(theta<-theta[k],iter<-k)
+}
>fun()
[[1]]
[1]0.6268215
[[2]]
[1]9
我们再看一个二元的简单例子:
幼儿园里老师给a,b,c,d四个小朋友发糖吃,但老师有点偏心,不同小朋友得到糖的概率不同,p(a)=0.5,p(b)=miu, p(c)=2*miu, p(d)=0.5-3*miu 如果确定了参数miu,概率分布就知道了。我们可以通过观察样本数据来推测参数知道c和d二人得到的糖果数,也知道a与b二人的糖果数之和为h,如何来估计出参数miu呢?前面我们知道了,如果观察到a,b,c,d就可以用ML估计出miu。反之,如果miu已知,根据概率期望 a/b=0.5/miu,又有a+b=h。由两个式子可得到 a=0.5*h/(0.5+miu)和b=miu*h/(0.5+miu)。
># 已知条件
>
>h = 20
>c = 10
>d = 10
>
># 随机初始两个未知量
>miu = runif(1,0,1/6)
>b = round(runif(1,1,20))
>
>iter = 1
>nonstop=TRUE
>while (nonstop) {
+ # E步骤,根据假设的miu来算b
+ b = c(b,miu[iter]*h/(0.5+miu[iter]))
+ print(b)
+ # M步骤,根据上面算出的b再来计算miu
+ miu = c(miu,(b[iter+1] +c)/(6*(b[iter+1]+c+d)))
+ print(miu)
+ # 记录循环次数
+ iter = iter + 1
+ # 如果前后两次的计算结果差距很小则退出
+ nonstop =((miu[iter]-miu[iter-1])>10^(-10))
+}
[1]3.000000 4.450531
[1]0.14310878 0.09850182
>print(cbind(miu,b))
miu b
[1,]0.14310878 3.000000
[2,]0.09850182 4.450531
关于EM算法,及后续的发展GME的理论你可以在多数数理统计书上找到相关结论,也可以用类似办法编写函数处理它。
二、 自助法(bootstrap)
Bootstrap法是以原始数据为基础的模拟抽样统计推断法,可用于研究一组数据的某统计量的分布特征,特别适用于那些难以用常规方法导出对参数的区间估计、假设检验等问题。“Bootstrap”的基本思想是:在原始数据的围内作有放回的再抽样,样本含量仍为n,原始数据中每个观察单位每次被抽到的概率相等,为1,…,n,所得样本称为bootstrap样本。于是可得到参数Η的一个估计值Η(b),这样重复若干次,记为B。设B=1000,就得到该参数的1000个估计值,则参数Η的标准误的bootstrap估计。简而言之就是:既然样本是抽出来的,那我何不从样本中再抽样。
我们知道,如果分布函数F是已知的。在理论上就能够计算出参数的估计量的均方误差.若分布函数f未知,由格里文科-康特利定理知,当M充分大时,经验分布函数以概率1一致收敛到F。
我们举一例:利用bootstrap法估计标准正态分布随机变量的期望theta=E(X)
>gauss<-rnorm(100,2,6)
>boot<-0
>for(i in 1:1000){
+boot[i]=mean(sample(gauss,replace=T))
+}
>summary(boot)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3345 1.9540 2.3350 2.3230 2.7020 4.2330
>summary(gauss)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.380 -2.238 2.570 2.296 6.861 16.230
>sd(boot)
[1]0.599087
>sd(gauss)/sqrt(100)
[1]0.5906275
结果分析:
需要指出的是bootstrap法不是为了提高估计量的精度.而是一般用来对估计量的方差进行估计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26