京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与点估计学习笔记(EM算法与Bootstrap法)
一、EM算法
EM算法是一种在观测到数据后,用迭代法估计未知参数的方法。可以证明EM算法得到的序列是稳定单调递增的。这种算法对于截尾数据或参数中有一些我们不感兴趣的参数时特别有效。
EM算法的步骤为:
E-step(求期望):在给定y及theta=theta(i)的条件下,求关于完全数据对数似然关于潜在变量z的期望
M-step(求极值):求上述期望关于theta的最大值theta(i+1)
重复以上两步,直至收敛即可得到theta的MLE。
从上面的算法我们可以看到对于一个参数的情况,EM仅仅只是求解MLE的一个迭代算法。M-step做得就是optimize函数做得事情。对于EM算法,我们也没有现成的求解函数(这个是自然的),我们一样可以通过人机交互的办法处理。
先举一个一元的例子:
设一次实验可能有4个结果,发生概率分别为0.5+theta/4, 0.25-theta/4 ,0.25-theta/4 ,theta/4.其中theta在0,1之间。现进行了197次实验,结果发生的次数分别为:125,18,20,34,求theta的MLE。
计算出theta(i+1)=(195theta(i)+68)/(197theta(i)+144)
为什么是这个结果,请翻阅王兆军《数理统计讲义》p43-p44
我们用简单的循环就可以解决这个问题,程序及结果如下:
>fun<-function(error=1e-7){
+theta<-0.5
+k<-1
+while(T){
+k<-k+1
+theta[k]<-(159*theta[k-1]+68)/(197*theta[k-1]+144)
+if(abs(theta[k]-theta[k-1])<error) break
+}
+list(theta<-theta[k],iter<-k)
+}
>fun()
[[1]]
[1]0.6268215
[[2]]
[1]9
我们再看一个二元的简单例子:
幼儿园里老师给a,b,c,d四个小朋友发糖吃,但老师有点偏心,不同小朋友得到糖的概率不同,p(a)=0.5,p(b)=miu, p(c)=2*miu, p(d)=0.5-3*miu 如果确定了参数miu,概率分布就知道了。我们可以通过观察样本数据来推测参数知道c和d二人得到的糖果数,也知道a与b二人的糖果数之和为h,如何来估计出参数miu呢?前面我们知道了,如果观察到a,b,c,d就可以用ML估计出miu。反之,如果miu已知,根据概率期望 a/b=0.5/miu,又有a+b=h。由两个式子可得到 a=0.5*h/(0.5+miu)和b=miu*h/(0.5+miu)。
># 已知条件
>
>h = 20
>c = 10
>d = 10
>
># 随机初始两个未知量
>miu = runif(1,0,1/6)
>b = round(runif(1,1,20))
>
>iter = 1
>nonstop=TRUE
>while (nonstop) {
+ # E步骤,根据假设的miu来算b
+ b = c(b,miu[iter]*h/(0.5+miu[iter]))
+ print(b)
+ # M步骤,根据上面算出的b再来计算miu
+ miu = c(miu,(b[iter+1] +c)/(6*(b[iter+1]+c+d)))
+ print(miu)
+ # 记录循环次数
+ iter = iter + 1
+ # 如果前后两次的计算结果差距很小则退出
+ nonstop =((miu[iter]-miu[iter-1])>10^(-10))
+}
[1]3.000000 4.450531
[1]0.14310878 0.09850182
>print(cbind(miu,b))
miu b
[1,]0.14310878 3.000000
[2,]0.09850182 4.450531
关于EM算法,及后续的发展GME的理论你可以在多数数理统计书上找到相关结论,也可以用类似办法编写函数处理它。
二、 自助法(bootstrap)
Bootstrap法是以原始数据为基础的模拟抽样统计推断法,可用于研究一组数据的某统计量的分布特征,特别适用于那些难以用常规方法导出对参数的区间估计、假设检验等问题。“Bootstrap”的基本思想是:在原始数据的围内作有放回的再抽样,样本含量仍为n,原始数据中每个观察单位每次被抽到的概率相等,为1,…,n,所得样本称为bootstrap样本。于是可得到参数Η的一个估计值Η(b),这样重复若干次,记为B。设B=1000,就得到该参数的1000个估计值,则参数Η的标准误的bootstrap估计。简而言之就是:既然样本是抽出来的,那我何不从样本中再抽样。
我们知道,如果分布函数F是已知的。在理论上就能够计算出参数的估计量的均方误差.若分布函数f未知,由格里文科-康特利定理知,当M充分大时,经验分布函数以概率1一致收敛到F。
我们举一例:利用bootstrap法估计标准正态分布随机变量的期望theta=E(X)
>gauss<-rnorm(100,2,6)
>boot<-0
>for(i in 1:1000){
+boot[i]=mean(sample(gauss,replace=T))
+}
>summary(boot)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3345 1.9540 2.3350 2.3230 2.7020 4.2330
>summary(gauss)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.380 -2.238 2.570 2.296 6.861 16.230
>sd(boot)
[1]0.599087
>sd(gauss)/sqrt(100)
[1]0.5906275
结果分析:
需要指出的是bootstrap法不是为了提高估计量的精度.而是一般用来对估计量的方差进行估计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12