京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与非参数统计(核密度估计)
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:
plot(density(rep(0, 1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:
可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:
plot(density(dat),ylim=c(0,0.2))
将利用正态核密度与标准密度函数作对比
得到下图:
(红色的曲线为真实密度曲线)
可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。
R中提供的核:kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight","cosine", "optcosine")。
我们先来看看窗宽的选择对核密度估计的影响:
得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。
窗宽究竟该如何选择呢?
我们这里不加证明的给出最佳窗宽选择公式:
(这个基于积分均方误差最小的角度得到的)
这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)
1、 Silverman大拇指法则
这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:
h=(4/(3n))^(*1/5)*sigma
2、 极大光滑原则
h=3*(R(K)/(35n))^(1/5)*sigma
当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computational statistics》一书
我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?
我们还是以上面的混合正态数据为例来看看效果。
使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291
使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023
可以看出他们都比我们认为的h=0.8要大一些,作图如下:
plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
由我们给出的
以Gauss核为例做核密度估计
用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):
作图如下:
最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数
先看看函数的基本用法:
density(x, ...)
## Default S3 method:
density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),
weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)
对重要参数做出较为详细的说明:
X:我们要进行核密度估计的数据
Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0: Bandwidth selectors for Gaussian kernels。我们还可以使用bw.SJ(x,nb = 1000, lower = 0.1 * hmax, upper = hmax, method = c("ste","dpi"), tol = 0.1 * lower),这里的method =”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进
Kernel:核的选择
Weights:对比较重要的数据采取加权处理
对于上述混合正态数据data,有
> density(data)
Call:
density.default(x = data)
Data: data (400 obs.); Bandwidth 'bw' = 0.8229
x y
Min. :-7.5040 Min. :0.0000191
1stQu.:-3.5076 1st Qu.:0.0064919
Median : 0.4889 Median :0.0438924
Mean :0.4889 Mean :0.0624940
3rdQu.: 4.4853 3rd Qu.:0.1172919
Max. :8.4817 Max. :0.1615015
知道带宽:h=0.8229(采取正态密度核)那么带入密度估计式就可以写出密度估计函数。
最后以faithful数据集为例说明density的用法:
R数据集faithful是old faithful火山爆发的数据,其中“eruption”是火山爆发的持续时间,waiting是时间间隔
对数据“eruption”做核密度估计
R程序:
知道h= 0.3348
作图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27