
从数据挖掘到大数据 人工智能量化策略的优势
大数据、人工智能(AI)在金融领域的应用,正在引发越来越多的讨论。
5月20日,在上海外国语大学主办、上海外国语大学国际金融贸易学院承办的首届“金融大数据和量化研究国际研讨会”上,同花顺金融大数据量化投资部主管杨明表示,相比阿尔法狗等的出色表现,人工智能在金融领域还没有看到很惊人的点。不过,Rebellion Research在2007年推出了第一个纯人工智能(AI)投资基金……可以展开联想,未来AI技术是否将替代基金经理的工作,可以拭目以待。
“未来非常可能出现这样的情况,有一天如果想买有关黄金的股票,就可以发语音对话这个大数据平台,它就可以快速告诉你可以有哪些标的可以选择。”太平洋资产管理有限责任公司量化投资部副总经理吴迪这样说。
此外,复旦大学计算机科学技术学院教授熊赟还提到,挖掘大数据等模型甚至可以用来抓“老鼠仓”。
从数据挖掘到大数据
大数据被视为人工智能发展的基础要素,其在金融领域的应用早已展开。
吴迪称,从这两年的体会来讲,大数据对量化投资的冲击非常大,特别是很多传统的投资理念,过去是Dig Data(数据挖掘),如今是Big Data(大数据)。未来量化投资可以给投研带来很多更高层面的精确性,“原先量化投资更多体现在广度上,可以同时追踪2000只股票,但其实这2000只股票都不是挖得很深,但利用大数据,投资的深度得到了很大的拓展。”
“大数据的特点,就是非结构化数据很多。”吴迪介绍,现在的大数据库除了最基本的股票、期货、国际市场、上市公司基本面等市面上已有的数据外,在非结构化数据方面,还可以用爬虫抓取股票、期货、期权预期的数据,即投资者情绪,目前这方面数据相对较小。
目前,大数据平台可以为分析师提供一些基本面的观点,比如某一股票突然股价大爆发,可以鉴别是消费者行为还是季节因素或促销行为导致,进一步来精确个股的持续分析。
吴迪称,如果某只股票在行业内的净利润高或者有某些方面优势,而经分析师确认它的数据分析基础又很可靠,那就可以加大权重,“如果在未来不能创造绝对收益,而又用大数据分析出在未来一段时间可以创造出相对收益,那么我们就利用股指对冲去赚取相对收益。”
用大数据抓老鼠仓“信息化和大数据并非一回事,我并不认同大数据就是信息化的2.0。”复旦大学计算机科学技术学院教授熊赟现场分享了有关“特征群组分析”的模型示范,挖掘大数据等模型甚至可以用来抓“老鼠仓”。通过交易所提供的数据,来自公安部分等其他部门的数据,包括买了什么股票,什么时间,什么价位等特征全部加进来,使得数据更准确。
熊赟补充,如果(案件)有举报人,监管层虽然可以直接进行账户穿透,但这其中也涉及到大数据问题,数据非常大的情况下依然需要模型。而“特征群组分析”所要做的则是在危害还没发生之前,就可以进行锁定监控,将犯罪终结在开始的瞬间,也就是说在其卖出行为发生之前,就已被监管发现并监控。
不过,熊赟承认,在这过程中,确实发现有失效的可能,“特征群组”会发现、躲避、对抗,所以越来越多的数据会加进来,力求更为准确。除此之外,大数据模型还可以确定对哪些用户最容易“被割韭菜”等。
人工智能量化策略的优势
“相比阿尔法狗等出色表现,人工智能在金融领域还没有看到很惊人的点。”同花顺金融大数据量化投资部主管杨明指出,可以看到Kensho、Weathfront等对智能投顾的运用,部分分析师和投资顾问的工作已经可以被替代,此外Rebellion Research在2007年退出了了第一个纯人工智能(AI)投资基金……由此可以展开联想,未来AI技术是否将替代基金经理的工作可以拭目以待。
尽管如此,业内一直存在较大争议,其中最重要的一点在于:人工智能是否能取代“人的因素”。
截至2017年4月底,中国证券投资基金业协会已登记私募基金管理人18890家。已备案私募基金52493只,认缴规模12.28万亿元,实缴规模8.95万亿元,私募基金从业人员22.56万人。
杨明指出,人工智能量化策略具有如下四大优势:具有自我完善的功能,可以不断优化策略,使之实现好的投资回报;有能力快速处理海量的数据和信息,可以不间断的获取变化的宏观数据,以及可能影响单个公司运营的因素;能够根据整个市场的交易环境指标以及外部的舆论导向因素来确定买卖点;可以适应各类投资环境,主动得迎接改变,并做出恰当的反应。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28