京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的一些方法如决策树,随机森林,SVM,神经网络由于对数据没有分布的假定等普通线性回归模型的一些约束,预测效果也比较不错,交叉验证结果也能被接受。下面以R中lars包包含数据集diabetes为例说明机器学习中的回归方法。
一、数据集及交叉验证办法描述
Diabetes数据集包含在R的lars包中,数据分为x,y,x2三个部分,因变量为y,数据是关于糖尿病的血液化验等指标。这个数据集最早被用在偏最小二乘回归的文章里。
交叉验证采用指标NMSE来评价模型好坏。这一统计量是计算模型预测性能和基准模型的预测性能之间的比率。通常采用目标变量的平均值来作为基准模型。其取值范围通常为0~1。如果模型表现优于这个非常简单的基准模型预测,那么NMSE应明显小于1。NMSE的值越小,模型的性能就越好。NMSE的值大于1,意味着模型预测还不如简单地把所有个案的平均值作为预测值!
交叉验证办法为将数据集分为5份,取4份作为训练集,1份作为测试集,共作5次,把误差平均起来作为衡量标准。选取代码如下:
二、回归树
决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。
基本算法:
1.选择一个属性放置在根节点,为每个可能的属性值产生一个分支
2.将样本划分成多个子集,一个子集对应于一个分支
3.在每个分支上递归地重复这个过程,仅使用真正到达这个分支的样本
4.如果在一个节点上的所有样本拥有相同的类别,即停止该部分树的扩展
构造决策树(集合划分)时选择属性:
1.ID3:Information Gain
2.C4.5:Gain Ratio
3.CART:Gini Index
在R中我们使用rpart包中的rpart()函数实现树回归。我们先把rpart包中的两个十分重要的函数介绍如下:
构建回归树的函数:rpart()用法如下:
rpart(formula, data, weights, subset,na.action = na.rpart, method,
model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ...)
主要参数说明:
fomula回归方程形式:例如 y~x1+x2+x3。
data数据:包含前面方程中变量的数据框(dataframe)。
na.action缺失数据的处理办法:默认办法是删除因变量缺失的观测而保留自变量缺失的观测。
method根据树末端的数据类型选择相应变量分割方法,本参数有四种取值:连续型“anova”;离散型“class”;计数型(泊松过程)“poisson”;生存分析型“exp”。程序会根据因变量的类型自动选择方法,但一般情况下最好还是指明本参数,以便让程序清楚做哪一种树模型。
parms用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法。
control控制每个节点上的最小样本量、交叉验证的次数、复杂性参量:即cp:complexitypamemeter,这个参数意味着对每一步拆分,模型的拟合优度必须提高的程度,等等。
进行剪枝的函数:prune()用法如下:
prune(tree, cp, ...)
主要参数说明:
tree一个回归树对象,常是rpart()的结果对象。
cp复杂性参量,指定剪枝采用的阈值。cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度,用来节省剪枝浪费的不必要的时间,R内部是怎么计算的我不知道,希望读者能够补充。
进一步补充一点关于CP值的东西:建立树模型要权衡两方面问题,一个是要拟合得使分组后的变异较小,另一个是要防止过度拟合,而使模型的误差过大,前者的参数是CP,后者的参数是Xerror。所以要在Xerror最小的情况下,也使CP尽量小。如果认为树模型过于复杂,我们需要对其进行修剪 。(摘自推酷上的《分类-回归树模型(CART)在R语言中的实现》)
运行代码:
得到回归树:
我们可以通过print(reg)来看到树的各个节点的细节。
我们来进行交叉验证,运行代码如下:
w<-diabetes[,2:3]
n<-length(w$y)
index1<-1:n
index2<-rep(1:5,ceiling(n/5))[1:n]
index2<-sample(index2,n)
NMSE<-rep(0,5)
NMSE0<-NMSE
for(i in 1:5){
m<-index1[index2==i]
reg<-rpart(y~.,w[-m,])
y0<-predict(reg,w[-m,])
y1<-predict(reg,w[m,])
NMSE0[i]<-mean((w$y[-m]-y0)^2)/mean((w$y[-m]-mean(w$y[-m]))^2)
NMSE[i]<-mean((w$y[m]-y1)^2)/mean((w$y[m]-mean(w$y[m]))^2)
}
R中输出结果:
> NMSE
[1] 0.7892592 0.8857756 0.8619379 1.0072968 0.7238316
> NMSE0
[1] 0.3503767 0.3417909 0.3400387 0.3192845 0.3467186
明显出现了过拟合现象,应该使用剪枝函数,对模型进行修正。
> reg$cptable
CP n split relerror xerror xstd
1 0.29154165 0 1.0000000 1.0040015 0.05033316
2 0.08785891 1 0.7084583 0.8040962 0.04896667
3 0.05660089 2 0.6205994 0.7227529 0.04657623
4 0.02169615 3 0.5639986 0.6424826 0.04302580
5 0.02093950 4 0.5423024 0.6591446 0.04376777
6 0.01723601 50.5213629 0.6749867 0.04578783
7 0.01678503 6 0.5041269 0.6841483 0.04554068
8 0.01349365 8 0.4705568 0.6845580 0.04429950
9 0.01166564 9 0.4570632 0.7370893 0.04829371
10 0.01089168 11 0.43373190.7452419 0.05041336
11 0.01070564 12 0.42284020.7417955 0.05054043
12 0.01042308 14 0.40142890.7399988 0.05088835
13 0.01003363 15 0.39100580.7566972 0.05143535
14 0.01000000 17 0.37093860.7650728 0.05110011
参照上述结果,选择合适的cp值。故修正为:
reg2<-prune(reg,cp=0.025)结果为:
再次进行交叉验证(代码略)可以看到:
> NMSE
[1] 0.5982049 0.6995054 0.6826815 0.8970573 0.6407927
> NMSE0
[1] 0.5559462 0.5177565 0.4953384 0.5019682 0.5233709
过拟合现象基本消除。
三、boosting回归
Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数。他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器。他可以用来提高其他弱分类算法的识别率,也就是将其他的弱分类算法作为基分类算法放于Boosting 框架中,通过Boosting框架对训练样本集的操作,得到不同的训练样本子集,用该样本子集去训练生成基分类器;每得到一个样本集就用该基分类算法在该样本集上产生一个基分类器,这样在给定训练轮数 n 后,就可产生 n 个基分类器,然后Boosting框架算法将这 n个基分类器进行加权融合,产生一个最后的结果分类器,在这 n个基分类器中,每个单个的分类器的识别率不一定很高,但他们联合后的结果有很高的识别率,这样便提高了该弱分类算法的识别率。
Boosting方法简而言之就是采取少数服从多数的原理,他的合理性在于如果每个回归树的出错率为40%,那么1000棵决策树犯错误的概率就降到了4.40753e-11,这就比较小了。
对diabetes数据做boosting回归,使用到的函数包为mboost,使用函数为mboost.用法如下:
mboost(formula, data = list(), baselearner = c("bbs", "bols", "btree", "bss", "bns"), ...)
其中formular需要使用到函数btree():
btree(..., tree_controls = ctree_control(stump = TRUE, mincriterion = 0, savesplitstats = FALSE)) 试运行下列代码:
我们可以得到boosting回归的信息,通过plot函数还有可视化结果。
这里值得一提的是我在做boosting回归时为了减少工作量直接做了变量选择(这个选择与回归树的最终选择是一致的,所以也有一定的道理)。最后交叉验证的结果为:测试集NMSE为0.5513152,训练集NMSE为0.4656569。比起上次计算的回归树模型测试集NMSE为0.7036484,训练集NMSE为0.518876好了不少。
四、bagging回归
与boosting回归想法类似,bagging回归的做法就是不断放回地对训练样本进行再抽样,对每个自助样本都建立一棵回归树,对于每一个观测,每棵树给一个预测,最后将其平均。
对diabetes数据做bagging回归,使用到的函数包为ipred,使用函数为bagging(),用法如下:
bagging(formula, data, subset, na.action=na.rpart, ...)
主要参数介绍:
Formula:回归方程形式
Data:数据集
Control:对树枝的控制,使用函数rpart.control(),可以控制诸如cp值,xval等参量。
输入代码:
library(ipred)结果为:
Baggingregression trees with 25 bootstrap replications
Call:bagging.data.frame(formula = y ~ ., data = w, coob = TRUE, control =rpart.control(cp = 0.025))
Out-of-bagestimate of root mean squared error: 58.3648
使用交叉验证(代码略),得到结果:测试集NMSE为0.5705753,训练集NMSE为0.3906232。比起上次计算的回归树模型测试集NMSE为0.7036484,训练集NMSE为0.518876好了不少。
五、随机森林回归
与bagging回归相比,随机森林则更进一步,不仅对样本进行抽样,还对变量进行抽样。
对diabetes数据做随机森林回归,使用到的函数包为randomForest,使用函数为randomForest(),用法如下:
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
这里值得一提的是,随机森林有个十分牛逼的性质,不会出现过拟合现象,这也省去了我们确定树的分类程度等一系列麻烦的事情。得到结果:测试集NMSE为0.08992529,训练集NMSE为0.08835731,效果显著提升。随机森林还可以输出自变量重要性度量,试运行代码:
library(randomForest)得到结果:
%IncMSE IncNodePurity
x.glu 68.8034199 42207.351
x2.age 22.6784331 18569.370
x2.sex 6.2735713 2808.346
x2.bmi 1379.0675134 371372.494
x2.map 331.3925059 113411.547
x2.tc 18.6080948 14990.179
x2.ldl 24.3690847 17457.214
x2.hdl 216.2741620 64627.209
x2.tch 419.0451857 93688.855
x2.ltg 1514.0912885 379235.430
x2.glu 81.7568020 51984.121
x2.age.2 1.5242836 19364.582
x2.bmi.2 75.6345112 53635.024
x2.map.2 5.9156799 23049.475
x2.tc.2 1.6792683 15631.426
(省略部分输出)
其中第二列为均方误差递减意义下的重要性,第三列为精确度递减意义下的重要性。
六、其他的回归方法
除去我们所说的以上4种方法外,还有人工神经网络回归,SVM回归,他们可以通过nnet,rminer包中有关函数实现,这里我们从略。
在结束本文之前,我想我们可以做一件更有意义的事。在介绍diabetes数据集时,我们提到了这个数据最早是一个关于偏最小二乘的例子。那么想必他与这个模型的契合度还是不错的,我们可以尝试去算算利用偏最小二乘得到的训练集与测试集的NMSE。
代码如下:
library(lars)
library(pls)
NMSE<-rep(0,5)
NMSE0<-NMSE
for(i in 1:5){
m<-index1[index2==i]
reg.pls <- plsr(y ~ x2, 64, data = diabetes[-m,], validation ="CV")
y0<-predict(reg.pls,diabetes[-m,])
y1<-predict(reg.pls,diabetes[m,])
NMSE0[i]<-mean((diabetes$y[-m]-y0)^2)/mean((diabetes$y[-m]-mean(diabetes$y[-m]))^2)
NMSE[i]<-mean((diabetes$y[m]-y1)^2)/mean((diabetes$y[m]-mean(diabetes$y[m]))^2)
}
运行结果:测试集NMSE为0.6094071,训练集NMSE为0.4031211。这里也仅仅是得到了一个优于回归树,与bagging回归相当,不如随机森林的一个结果。也说明了机器学习方法在实际问题中还是有一定优势的。但这绝不意味着这样的回归可以代替OLS,毕竟这些数据挖掘的方法在表达式的简洁程度,计算量等诸多方面还是存在着或多或少的不足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27