京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社交和电商不断融合发展 大数据将赋能时尚行业新零售
新零售已经成为如今消费领域的热词。如何定义新零售?笔者认为,新零售是以消费者体验为中心的数据驱动的泛零售形态。
新零售的特征包括:数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求;借助数字技术,物流业、大文娱等多元业态延伸出多元的零售形态;任何零售主体,消费者和商品既是物理的也是数字化的,企业内部和企业间流通的损耗最终可达到无限逼近“零”的理想状态。
如今,人们的一举一动都会留下数据痕迹。大数据是一种包罗万象且规模庞大的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据的价值在于对数据的“加工能力”,通过“加工”实现数据的“增值”。数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求,因此,企业需要更加精准的数据以洞察不同消费者需求。
如今,国民经济快速发展,人民生活水平提高,各方面消费力量兴起;用户更加注重商品品质,选择符合自身需要和消费特征的商品;商业回归产品与服务的本质,产生出更符合细分消费需求的商品和服务。
在这些宏观经济背景下,消费用户逐渐趋于细分,“泛90后”和女性,已经成为时尚产业两大主要目标客群,具有高学历、高信心、高收入、高频次、易种草、更细分等六大特征。以“泛90后”为例,泛90后人群有着和其他年龄层消费者完全不一样的面相。他们成长于物质已经比较充裕的年代,习惯于用互联网获取大量信息;他们是一群smart shopper,相比价格,他们更关注商品品质、服务体验和品牌个性等方面。
同时,针对女性消费的研究表明,女性消费者特别是年轻女性消费者的消费呈现比较高的消费频次,女性消费者已经非常习惯于社交型的电商形态,在社交的过程中吸取别人的购物建议,获取新的购物信息并在内心“种草”。而大量专门针对女性设计的产品崭露头角的背景则是女性细分化市场迎来非常好的发展。
未来用户的购物需求和购物场景,将会出现‘时空、信息、需求、渠道、生产’这五个‘碎片化’。因此也出现了社交电商、物联网、闪购等多元化的购物形式。基于时尚消费者的变化,未来时尚零售将出现场景化、数据化、个性化、社交化等四大趋势。
移动互联网时代,市场开始由传统价格导向转为场景导向,随着移动购物模式的多样化,与场景相关的应用将成为驱动消费者迁移的新增长点;随着对大数据的深度挖掘,对于用户风格喜好,款式,颜色,设计细节等的决策越来越多地被数据指导,对于用户的千人千面个性化推荐也将越发成熟;消费需求个性化在电商发展中快速演变,升级,适应用户的转变并期待引领用户消费观,一批垂直电商兴起,围绕人群深耕;在网红风靡、内容电商兴起及大数据的冲击与推动下,社交和电商不断融合发展,电商行业已逐渐向基于社会化发展。
新时尚电商例如美丽联合集团,就正在努力尝试借助大数据和新零售形式,帮助服装行业供给侧解决一直以来令人困扰的款式预测和库存问题。通过大数据分析,我们将可以得出更加准确的款式预测,并基于大数据进行款式判断算法,经过流通环节的测款等方法做到最大程度的精准库存预测,从而做到“零库存”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31