京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与函数估计学习笔记(函数展开)
函数估计
说到函数的估计我们可以肯定的一点是我们很难得到原模型的函数,不过我们可以找到一个不坏的函数去逼近它,所以我们的函数估计从函数展开开始说起。
函数展开
Taylor展开
首先不得不提的就是大名鼎鼎的Taylor展开,它告诉我们一个光滑的函数在x=t的一个邻域内有Taylor展式

它给我们的一个重要启示就是我们可以把我们感兴趣的函数拆解成若干个简单函数q0(x),q1(x)⋯,的线性组合。

那么还剩一个问题,就是qj(x)选什么。当然一个简单的选择就是qj(x)=xj,或者我们取t=x¯,qj(x)=(x−x¯)j。我们来看看这组函数基qj(x)=xj对标准正态密度函数的估计效果
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
summary(model)
##
## Call:
## lm(formula = y ~ poly(x, 2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07901 -0.06035 -0.00363 0.05864 0.10760
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 8.09e-03 20.2 <2e-16 ***
## poly(x, 2)1 -1.77e-16 6.32e-02 0.0 1
## poly(x, 2)2 -9.79e-01 6.32e-02 -15.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0632 on 58 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.799
## F-statistic: 120 on 2 and 58 DF, p-value: <2e-16
从图像上来看,这个拟合不是很好,我们可以认为是p较小造成的,一个解决办法就是提高p的阶数,令p=10我们可以试试:
model1 <- lm(y ~ poly(x, 10))
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
lines(fitted(model1), col = 3)
summary(model1)
##
## Call:
## lm(formula = y ~ poly(x, 10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.86e-04 -2.03e-04 1.45e-05 1.83e-04 2.83e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 2.94e-05 5572.4 <2e-16 ***
## poly(x, 10)1 -1.92e-16 2.29e-04 0.0 1
## poly(x, 10)2 -9.79e-01 2.29e-04 -4268.8 <2e-16 ***
## poly(x, 10)3 2.36e-16 2.29e-04 0.0 1
## poly(x, 10)4 4.54e-01 2.29e-04 1979.0 <2e-16 ***
## poly(x, 10)5 -1.65e-16 2.29e-04 0.0 1
## poly(x, 10)6 -1.54e-01 2.29e-04 -672.4 <2e-16 ***
## poly(x, 10)7 1.67e-17 2.29e-04 0.0 1
## poly(x, 10)8 4.09e-02 2.29e-04 178.5 <2e-16 ***
## poly(x, 10)9 2.07e-16 2.29e-04 0.0 1
## poly(x, 10)10 -8.85e-03 2.29e-04 -38.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000229 on 50 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.26e+06 on 10 and 50 DF, p-value: <2e-16
从上图看到,拟合效果好了不少,这样看上去我们只需要提高基函数阶数就可以解决拟合优度的问题了。但是注意到随着阶数提高,可能出现设计阵降秩的情形,也有可能出现复共线性,这是我们不希望看到的。为了解决第一个问题,我们的做法是限制p的最大取值,如将p限制在5以下;对于第二个问题,我们的做法便是采用正交多项式基。
正交多项式展开
正交多项式的相关定义可以参阅wiki,这里就不在啰嗦了,我们这里列出Legendre多项式基与Hermite多项式基。
其中Legendre多项式基已经在wiki中给出了,其取值范围是[-1,1],权函数是1,表达式为:

Legendre多项式基的递归表达式可以表达为:
我们这里来看一个例子,假设真实模型为y=5xcos(5πx),我们一共做了10次试验,得到了10个观测,现在我们要找一个拟模型来近似这个真实模型。我们来看看多项式基的效果:
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
A <- data.frame(x = seq(-1, 1, length = 1000))
model.linear <- lm(y ~ poly(x, 6))
lines(seq(-1, 1, length = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, length = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "6 order poly-reg", "9 order poly-reg", "6 order orth-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
Fourier展开
这里我们就可以看到,多项式拟合对于这种含周期的问题的解决效果是很不好的,正交多项式完全不行,可见问题并不是出在复共线性上,对于含周期的函数的逼近我们可以引入Fourier基:

我们来看看拟合效果:
x <- seq(-1, 1, length = 10)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5))
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
可见Fourier基对周期函数的拟合还是很好的。但是这必须是不含趋势的结果,含趋势的只能在局部有个不错的拟合,如果我们把上面的模型换为5x+cos(5πx),可以看到Fourier基拟合的效果是十分糟糕的。
x <- seq(-1, 1, length = 10)
y <- 5 * x + cos(5 * pi * x)
f <- function(x) 5 * x + cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
样条基展开
有些时候我们对全局的拟合是有缺陷的,所以可以进行分段的拟合,一旦确定了分段的临界点,我们就可以进行局部的回归,样条基本上就借鉴了这样一个思想。
为了增加局部的拟合优度,我们在原来的函数基1,x,x2,⋯,xp上加上
其中,knot表示节点,函数(x−knoti)+表示函数(x−knoti)取值为正时取函数值,否则取0.
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.reg <- lm(y ~ poly(x, 5))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.reg, A), col = 2)
ndat <- length(x)
knots <- seq(-1, 1, length = 10)
f <- function(x, y) ifelse(y > x, (y - x)^3, 0)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
model.cubic <- lm(y ~ X)
x <- seq(-1, 1, length = 1000)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
A <- as.data.frame(X)
lines(seq(-1, 1, len = 1000), predict(model.cubic, A), col = 3)
从上图中我们可以看到加上样条基后,拟合效果瞬间提高了不少,三阶样条基就可以匹敌5~6阶的多项式基了。R中的splines包中提供了polyspline函数,来做样条拟合,我们可以看看在这个例子中它几乎就是原函数的“复制”。
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
library(splines)
model <- polySpline(interpSpline(y ~ x))
# print(model)
plot(model, col = 2)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5), add = T)
points(x, y)
本节的最后,我们最后来看看函数展开的相关内容,如果说我们已经知道了函数f(x)的表达式,想求解一个近似的函数展开式的系数,我们只需要将f(x)拆解为f(x)=g(x)p(x),其中p(x)为密度函数,那么展开式系数可以近似的表示为
其中x1,⋯,xn是由p(x)产生的随机数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12