
R语言与函数估计学习笔记(函数展开)
函数估计
说到函数的估计我们可以肯定的一点是我们很难得到原模型的函数,不过我们可以找到一个不坏的函数去逼近它,所以我们的函数估计从函数展开开始说起。
函数展开
Taylor展开
首先不得不提的就是大名鼎鼎的Taylor展开,它告诉我们一个光滑的函数在x=t的一个邻域内有Taylor展式
它给我们的一个重要启示就是我们可以把我们感兴趣的函数拆解成若干个简单函数q0(x),q1(x)⋯,的线性组合。
那么还剩一个问题,就是qj(x)选什么。当然一个简单的选择就是qj(x)=xj,或者我们取t=x¯,qj(x)=(x−x¯)j。我们来看看这组函数基qj(x)=xj对标准正态密度函数的估计效果
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
summary(model)
##
## Call:
## lm(formula = y ~ poly(x, 2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07901 -0.06035 -0.00363 0.05864 0.10760
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 8.09e-03 20.2 <2e-16 ***
## poly(x, 2)1 -1.77e-16 6.32e-02 0.0 1
## poly(x, 2)2 -9.79e-01 6.32e-02 -15.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0632 on 58 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.799
## F-statistic: 120 on 2 and 58 DF, p-value: <2e-16
从图像上来看,这个拟合不是很好,我们可以认为是p较小造成的,一个解决办法就是提高p的阶数,令p=10我们可以试试:
model1 <- lm(y ~ poly(x, 10))
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
lines(fitted(model1), col = 3)
summary(model1)
##
## Call:
## lm(formula = y ~ poly(x, 10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.86e-04 -2.03e-04 1.45e-05 1.83e-04 2.83e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 2.94e-05 5572.4 <2e-16 ***
## poly(x, 10)1 -1.92e-16 2.29e-04 0.0 1
## poly(x, 10)2 -9.79e-01 2.29e-04 -4268.8 <2e-16 ***
## poly(x, 10)3 2.36e-16 2.29e-04 0.0 1
## poly(x, 10)4 4.54e-01 2.29e-04 1979.0 <2e-16 ***
## poly(x, 10)5 -1.65e-16 2.29e-04 0.0 1
## poly(x, 10)6 -1.54e-01 2.29e-04 -672.4 <2e-16 ***
## poly(x, 10)7 1.67e-17 2.29e-04 0.0 1
## poly(x, 10)8 4.09e-02 2.29e-04 178.5 <2e-16 ***
## poly(x, 10)9 2.07e-16 2.29e-04 0.0 1
## poly(x, 10)10 -8.85e-03 2.29e-04 -38.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000229 on 50 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.26e+06 on 10 and 50 DF, p-value: <2e-16
从上图看到,拟合效果好了不少,这样看上去我们只需要提高基函数阶数就可以解决拟合优度的问题了。但是注意到随着阶数提高,可能出现设计阵降秩的情形,也有可能出现复共线性,这是我们不希望看到的。为了解决第一个问题,我们的做法是限制p的最大取值,如将p限制在5以下;对于第二个问题,我们的做法便是采用正交多项式基。
正交多项式展开
正交多项式的相关定义可以参阅wiki,这里就不在啰嗦了,我们这里列出Legendre多项式基与Hermite多项式基。
其中Legendre多项式基已经在wiki中给出了,其取值范围是[-1,1],权函数是1,表达式为:
Legendre多项式基的递归表达式可以表达为:
我们这里来看一个例子,假设真实模型为y=5xcos(5πx),我们一共做了10次试验,得到了10个观测,现在我们要找一个拟模型来近似这个真实模型。我们来看看多项式基的效果:
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
A <- data.frame(x = seq(-1, 1, length = 1000))
model.linear <- lm(y ~ poly(x, 6))
lines(seq(-1, 1, length = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, length = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "6 order poly-reg", "9 order poly-reg", "6 order orth-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
Fourier展开
这里我们就可以看到,多项式拟合对于这种含周期的问题的解决效果是很不好的,正交多项式完全不行,可见问题并不是出在复共线性上,对于含周期的函数的逼近我们可以引入Fourier基:
我们来看看拟合效果:
x <- seq(-1, 1, length = 10)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5))
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
可见Fourier基对周期函数的拟合还是很好的。但是这必须是不含趋势的结果,含趋势的只能在局部有个不错的拟合,如果我们把上面的模型换为5x+cos(5πx),可以看到Fourier基拟合的效果是十分糟糕的。
x <- seq(-1, 1, length = 10)
y <- 5 * x + cos(5 * pi * x)
f <- function(x) 5 * x + cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
样条基展开
有些时候我们对全局的拟合是有缺陷的,所以可以进行分段的拟合,一旦确定了分段的临界点,我们就可以进行局部的回归,样条基本上就借鉴了这样一个思想。
为了增加局部的拟合优度,我们在原来的函数基1,x,x2,⋯,xp上加上其中,knot表示节点,函数(x−knoti)+表示函数(x−knoti)取值为正时取函数值,否则取0.
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.reg <- lm(y ~ poly(x, 5))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.reg, A), col = 2)
ndat <- length(x)
knots <- seq(-1, 1, length = 10)
f <- function(x, y) ifelse(y > x, (y - x)^3, 0)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
model.cubic <- lm(y ~ X)
x <- seq(-1, 1, length = 1000)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
A <- as.data.frame(X)
lines(seq(-1, 1, len = 1000), predict(model.cubic, A), col = 3)
从上图中我们可以看到加上样条基后,拟合效果瞬间提高了不少,三阶样条基就可以匹敌5~6阶的多项式基了。R中的splines包中提供了polyspline函数,来做样条拟合,我们可以看看在这个例子中它几乎就是原函数的“复制”。
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
library(splines)
model <- polySpline(interpSpline(y ~ x))
# print(model)
plot(model, col = 2)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5), add = T)
points(x, y)
本节的最后,我们最后来看看函数展开的相关内容,如果说我们已经知道了函数f(x)的表达式,想求解一个近似的函数展开式的系数,我们只需要将f(x)拆解为f(x)=g(x)p(x),其中p(x)为密度函数,那么展开式系数可以近似的表示为其中x1,⋯,xn是由p(x)产生的随机数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10