京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与函数估计学习笔记(函数展开)
函数估计
说到函数的估计我们可以肯定的一点是我们很难得到原模型的函数,不过我们可以找到一个不坏的函数去逼近它,所以我们的函数估计从函数展开开始说起。
函数展开
Taylor展开
首先不得不提的就是大名鼎鼎的Taylor展开,它告诉我们一个光滑的函数在x=t的一个邻域内有Taylor展式

它给我们的一个重要启示就是我们可以把我们感兴趣的函数拆解成若干个简单函数q0(x),q1(x)⋯,的线性组合。

那么还剩一个问题,就是qj(x)选什么。当然一个简单的选择就是qj(x)=xj,或者我们取t=x¯,qj(x)=(x−x¯)j。我们来看看这组函数基qj(x)=xj对标准正态密度函数的估计效果
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
summary(model)
##
## Call:
## lm(formula = y ~ poly(x, 2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07901 -0.06035 -0.00363 0.05864 0.10760
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 8.09e-03 20.2 <2e-16 ***
## poly(x, 2)1 -1.77e-16 6.32e-02 0.0 1
## poly(x, 2)2 -9.79e-01 6.32e-02 -15.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0632 on 58 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.799
## F-statistic: 120 on 2 and 58 DF, p-value: <2e-16
从图像上来看,这个拟合不是很好,我们可以认为是p较小造成的,一个解决办法就是提高p的阶数,令p=10我们可以试试:
model1 <- lm(y ~ poly(x, 10))
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
lines(fitted(model1), col = 3)
summary(model1)
##
## Call:
## lm(formula = y ~ poly(x, 10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.86e-04 -2.03e-04 1.45e-05 1.83e-04 2.83e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 2.94e-05 5572.4 <2e-16 ***
## poly(x, 10)1 -1.92e-16 2.29e-04 0.0 1
## poly(x, 10)2 -9.79e-01 2.29e-04 -4268.8 <2e-16 ***
## poly(x, 10)3 2.36e-16 2.29e-04 0.0 1
## poly(x, 10)4 4.54e-01 2.29e-04 1979.0 <2e-16 ***
## poly(x, 10)5 -1.65e-16 2.29e-04 0.0 1
## poly(x, 10)6 -1.54e-01 2.29e-04 -672.4 <2e-16 ***
## poly(x, 10)7 1.67e-17 2.29e-04 0.0 1
## poly(x, 10)8 4.09e-02 2.29e-04 178.5 <2e-16 ***
## poly(x, 10)9 2.07e-16 2.29e-04 0.0 1
## poly(x, 10)10 -8.85e-03 2.29e-04 -38.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000229 on 50 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.26e+06 on 10 and 50 DF, p-value: <2e-16
从上图看到,拟合效果好了不少,这样看上去我们只需要提高基函数阶数就可以解决拟合优度的问题了。但是注意到随着阶数提高,可能出现设计阵降秩的情形,也有可能出现复共线性,这是我们不希望看到的。为了解决第一个问题,我们的做法是限制p的最大取值,如将p限制在5以下;对于第二个问题,我们的做法便是采用正交多项式基。
正交多项式展开
正交多项式的相关定义可以参阅wiki,这里就不在啰嗦了,我们这里列出Legendre多项式基与Hermite多项式基。
其中Legendre多项式基已经在wiki中给出了,其取值范围是[-1,1],权函数是1,表达式为:

Legendre多项式基的递归表达式可以表达为:
我们这里来看一个例子,假设真实模型为y=5xcos(5πx),我们一共做了10次试验,得到了10个观测,现在我们要找一个拟模型来近似这个真实模型。我们来看看多项式基的效果:
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
A <- data.frame(x = seq(-1, 1, length = 1000))
model.linear <- lm(y ~ poly(x, 6))
lines(seq(-1, 1, length = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, length = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "6 order poly-reg", "9 order poly-reg", "6 order orth-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
Fourier展开
这里我们就可以看到,多项式拟合对于这种含周期的问题的解决效果是很不好的,正交多项式完全不行,可见问题并不是出在复共线性上,对于含周期的函数的逼近我们可以引入Fourier基:

我们来看看拟合效果:
x <- seq(-1, 1, length = 10)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5))
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
可见Fourier基对周期函数的拟合还是很好的。但是这必须是不含趋势的结果,含趋势的只能在局部有个不错的拟合,如果我们把上面的模型换为5x+cos(5πx),可以看到Fourier基拟合的效果是十分糟糕的。
x <- seq(-1, 1, length = 10)
y <- 5 * x + cos(5 * pi * x)
f <- function(x) 5 * x + cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
样条基展开
有些时候我们对全局的拟合是有缺陷的,所以可以进行分段的拟合,一旦确定了分段的临界点,我们就可以进行局部的回归,样条基本上就借鉴了这样一个思想。
为了增加局部的拟合优度,我们在原来的函数基1,x,x2,⋯,xp上加上
其中,knot表示节点,函数(x−knoti)+表示函数(x−knoti)取值为正时取函数值,否则取0.
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.reg <- lm(y ~ poly(x, 5))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.reg, A), col = 2)
ndat <- length(x)
knots <- seq(-1, 1, length = 10)
f <- function(x, y) ifelse(y > x, (y - x)^3, 0)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
model.cubic <- lm(y ~ X)
x <- seq(-1, 1, length = 1000)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
A <- as.data.frame(X)
lines(seq(-1, 1, len = 1000), predict(model.cubic, A), col = 3)
从上图中我们可以看到加上样条基后,拟合效果瞬间提高了不少,三阶样条基就可以匹敌5~6阶的多项式基了。R中的splines包中提供了polyspline函数,来做样条拟合,我们可以看看在这个例子中它几乎就是原函数的“复制”。
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
library(splines)
model <- polySpline(interpSpline(y ~ x))
# print(model)
plot(model, col = 2)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5), add = T)
points(x, y)
本节的最后,我们最后来看看函数展开的相关内容,如果说我们已经知道了函数f(x)的表达式,想求解一个近似的函数展开式的系数,我们只需要将f(x)拆解为f(x)=g(x)p(x),其中p(x)为密度函数,那么展开式系数可以近似的表示为
其中x1,⋯,xn是由p(x)产生的随机数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27