京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与显著性检验学习笔记
一、何为显著性检验
显著性检验的思想十分的简单,就是认为小概率事件不可能发生。虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验中没有发生。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设),与H0对立的假设记作H1,称为备择假设。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。
我们常用的显著性检验有t检验,卡方检验,相关性检验等,在做这一些检验时,有什么需要注意的呢?
二、正态性与P值
t检验,卡方检验,相关性检验中的pearson方法都是建立在正态样本的假设下的,所以在假设检验开始时,一般都会做正态性分析。在R中可以使用shapiro.test()。来作正态性检验。当然在norm.test包中还提供了许多其他的方法供我们选择。
P值是可以拒绝原假设的最小水平值。
三、四个重要的量
综合前面的叙述,我们知道研究显著性检验有四个十分重要的量:样本大小,显著性水平,功效,效应值。
样本大小:这个显然,样本越多,对样本的把握显然越准确,但是鉴于我们不可能拥有无限制的样本,那么多少个样本可以达到要求?今天的分享中我们可以通过R来找到答案。
显著性水平:犯第一类错误的概率,这个在做检验前我们会提前约定,最后根据P值来决定取舍。
功效:这个是在显著性检验中一般不提及但实际十分有用的量。它衡量真实事件发生的概率。也就是说功效越大,第二类错误越不可能发生。虽然显著性假设检验不提及它,但衡量假设检验的好坏的重要指标便是两类错误尽可能小。
效应值:备择假设下效应的量
四、用pwr包做功效分析
Pwr包中提供了以下函数:
下面我们来介绍以上一些函数的用法。
1、 t检验
调用格式:
pwr.t.test(n = NULL, d = NULL, sig.level =0.05, power = NULL, type =c("two.sample", "one.sample", "paired"),alternative = c("two.sided", "less","greater"))
参数说明:
N:样本大小
D:t检验的统计量
Sig.level:显著性水平
Power:功效水平
Type:检验类型,这里默认是两样本,且样本量相同
Alternative:统计检验是双侧还是单侧,这里默认为双侧
举例说明:已知样本量为60,单一样本t检验的统计量的值为0.2(这个可以通过t.test(data)$statistic取出来),显著水平α=0.1,那么功效是多少呢?
R中输入命令:
得到结果:
One-sample t test power calculation
n = 60
d = 0.2
sig.level = 0.1
power = 0.4555818
alternative = two.sided
我们可以看到,犯第二类错误的概率在50%以上,我们应该相信这个结果吗(无论根据P值来看是拒绝还是接受)?显然不行,那么需要多少个样本才能把第二类错误降低到10%呢?
在R中输入:
pwr.t.test(d=0.2,power=0.9,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 215.4542
d = 0.2
sig.level = 0.1
power = 0.9
alternative = two.sided
也就是说216个样本才可以得到满意的结果,使得第二类错误概率不超过0.1.
对于两样本而言是类似的,我们不在赘述,我们下面再介绍另一种t检验的情况:两样本不相等。
调用格式:
pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL,sig.level = 0.05, power = NULL, alternative = c("two.sided","less","greater"))
参数说明:
n1 Numberof observations in the first sample
n2 Numberof observations in the second sample
d Effectsize
sig.level Significancelevel (Type I error probability)
power Powerof test (1 minus Type II error probability)
alternative acharacter string specifying the alternative hypothesis, must be one of"two.sided" (default), "greater" or "less"
例如:两个样本量为90,60,统计量为0.6,单侧t检验,α=0.05,为望大指标。
R中的命令:
输出结果:
t test power calculation
n1 = 90
n2 = 60
d = 0.6
sig.level = 0.05
power = 0.9737262
alternative = greater
可以看出功效十分大,且α=0.05,我们相信这次检验的结论很可信。
2、 相关性
Pwr.r.test()函数对相关性分析进行功效分析。格式如下:
pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
这里和t检验不同的是r是线性相关系数,可以通过cor(data1,data2)获取,但需要注意的是不要输入spearman,kendall相关系数,他们是衡量等级相关的。
假定我们研究抑郁与孤独的关系,我们的原假设和备择假设为:
H0:r<0.25 v.s. H1:r>0.25
假定显著水平为0.05,原假设不真,我们想有90%的信心拒绝H0,需要观测多少呢?
下面的代码给出答案:
pwr.r.test(r=0.25,sig.level=0.05,power=0.9,alt="greater")
approximate correlation power calculation (arctangh transformation)
n = 133.8325
r = 0.25
sig.level = 0.05
power = 0.9
alternative = greater
易见,需要样本134个
3、 卡方检验
原假设为变量之间独立,备择假设为变量不独立。命令为pwr.chisq.test(),调用格式:
pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)其中w为效应值,可以通过ES.w2计算出来,df为列联表自由度
举例:
输出结果:
Chi squared power calculation
w = 0.2558646
N = 200
df = 3
sig.level = 0.05
power = 0.8733222
NOTE: N is the number of observations
也就是说,这个观测下反第二类错误的概率在13%左右,结果较为可信。
在R中还有不少与功效分析有关的包,我们不加介绍的把它们列举如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12