
SAS逻辑回归之二分类
数据集这里用的是australian,有14个自变量Xi,一个因变量Y,Y值只取0或1。
代码如下:
/*逻辑回归数据集australian(690个观测值,每个含14个属性,目标变量y(0、1))*/
/*导入数据集australian到逻辑库work中*/
proc import out=aus
datafile="\\vmware-host\Shared Folders\桌面\SAS\\data\australian.csv" /*文件路径*/
dbms=csv replace; /*文件类型指定*/
delimiter=',';
getnames=yes; /*是否将第一列作为列名*/
run;
/*查看数据集*/
proc print data=aus;
run;
/**************************** 使用交叉验证法选择最优模型 *****************************************/
/*利用10-折交叉验证法计算测试集上的预测准确率*/
%let k=10; /*定义宏变量-交叉验证的折数k*/
%let rate=%sysevalf((&k-1)/&k); /*给出交叉验证的样本抽样比率(因为宏变量k的本质是文本,不能直接参与运算,要将其视为数字计算要用%evalf or %sysevalf)*/
/*生成交叉验证的10个样例,保存在cv中*/
proc surveyselect data=aus
out=cv /*生成的样例全部放在数据集cv中*/
seed=158
samprate=&rate /*抽样比率设定,宏变量rate的调用要加&*/
outall /*输出全部数据*/
reps=10; /*指定样本重复的次数*/
run;
/*交叉验证的生成数据集中,selected列为1表示该行为训练集样本,0表示测试集样本,这里为new_y赋值,
若selected=1,则可获得Y的值,若为0,该行的new_y为空。接下来给出new_y为空行的预测值。*/
data cv;
set cv;
if selected then new_y=Y;
run;
/*逻辑回归主程序 - 10折交叉验证*/
ods output parameterestimates=paramest /*输出交叉验证的参数估计值*/
association=assoc; /*输出交叉验证的C统计量*/
proc logistic data=cv des; /*des控制以Y=1来建模*/
/* class new_y (param=ref ref='yes'); 若new_y是分类变量,则用class对其参数化处理,这里选择处理方式为ref,以“yes”作为参考水平,以便于后续odds的计算*/
model new_y=X1-X14 / SELECTION=STEPWISE SLE=0.1 SLS=0.1;
by replicate; /*以交叉验证的组别来分组建模*/
output out=out1(where=(new_y=.)) /*只给出测试集的预测结果(即new_y为空的样本)*/
p=y_hat;
run;
ods output close;
data out1;
set out1;
if y_hat>0.5 then pred=_LEVEL_ ; /* PHAT为logistic方程针对每个观察体计算的属于该组别的概率,若PHAT>0.5,则属于该组别(这里level为1),否则,属于另一组别 */
else pred=0; /* 本例为二分类,概率依照level(1)计算,因此另一类为0 */
run;
/*汇总交叉验证的结果*/
/*计算预测准确率(测试集中预测准确的样本占预测总样本的概率)*/
data out2;
set out1;
if Y=pred then d=1; /*d为真实值和预测值的误差,这里设无误差为1,有误差为0*/
else d=0;
run;
proc summary data=out2;
var d;
by replicate;
output out=out3 sum(d)=d1; /*预测正确的个数*/
run;
data out3;
set out3;
acc=d1/_freq_; /*预测准确率*/
keep replicate acc;
run;
/*结果中加入交叉验证的C统计量(度量观测值和预测值之间的一致性,越大越好)*/
data assoc;
set assoc;
where label2="c";
keep replicate cvalue2;
run;
/*合并交叉验证的统计结果*/
data cvresult;
merge assoc(in=ina) out3(in=inb);
keep replicate cvalue2 acc;
run;
proc print data=cvresult;
title'交叉验证组号、c统计量、预测准确率';
run;
title '交叉验证最优模型选择:组号、预测准确率';
ods output SQL_Results=cvparam; /*保存最优模型结果在cvparam数据集中*/
proc sql ;
select replicate,acc from cvresult having acc=max(acc);
quit;
ods output close;
/***************** 以交叉验证的最优结果组进行建模 *************************************/
/*以最优组合从cv的10个样例中拿出最优样例,作为训练集和测试集*/
/*取出最优组号对应的selected=1的行,作为训练集train,其余的作为测试集test*/
proc sql ;
create table train as
select * from cv where replicate in (select replicate from cvparam)
having selected=1;
create table test as
select * from cv where replicate in (select replicate from cvparam)
having selected=0;
run;
TITLE '--------Logistic Regression - 数据集Neur - 建模方法 STEPWISE ---------------------------';
/* 逻辑回归主程序 - 通过训练集建立logistic模型*/
proc logistic data=train DES /*根据分类值从大到小选择建模组别,此处为yes*/
covout outest=Nout_step /*输出建模参数估计值及变量间的协方差矩阵*/
outmodel=model /*输出建模结果(若想要通过已有的建模结果来预测新数据集,这里可以用inmodel实现)*/
simple; /*输出变量的简单统计量*/
/* class Y (param=ref ref='yes'); 若Y是分类变量,则用class对其参数化处理,这里选择处理方式为ref,以“yes”作为参考水平,以便于后续odds的计算*/
MODEL Y=X1-X14 /*logistic回归模型:反应变量=自变量1 2 3...*/
/ SELECTION=STEPWISE /*选择建模方式 - 逐步排除法*/
SLE=0.1 SLS=0.1 /*变量在模型中的显著程度,默认为0.05*/
details /*输出模型界定的过程,包括自变量的检定和相关系数的值*/
lackfit /*输出HL拟合优度*/
RSQ /*模型解释度R方*/
STB /*输出标准化模型后的参数*/
CL /*参数估计和置信区间*/
itprint /*输出分析每个步骤的统计量*/
corrb /*输出变量的相关矩阵*/
covb /*输出变量的协方差矩阵*/
ctable /*输出不同阈值下的二分类变量的分组情况,类似于ROC曲线上的每个点的值*/
influence /*输出观察体中每个变量统计量,便于找出对分析结果影响力较大的观察体*/
IPLOTS ; /*针对influence的结果画出图形,影响力过高的观察体在图形上都会显得特别突出*/
score data=train outroc=train_roc; /*通过score语句得到训练集上一系列的sensitivity和specificity,画出ROC曲线*/
score data=test
out=test_pred
outroc=test_roc; /*通过score来预测测试集,结果保存在test_pred中,画出ROC曲线*/
OUTPUT out=train_pred /*保存模型预测结果在该数据集中,数据集中包含的列由以下添加的统计量给出*/
P=PHAT lower=LCL upper=UCL /*输出文件中包含每个观察体属于logistic方程预测组别的概率,用PHAT作列名,LCL和UCL为置信上下限的值*/
RESCHI=RESCHI RESDEV=RESDEV /*Pearson残差和偏差残差,找出与模型不太符合的观察体*/
DIFCHISQ=DIFCHISQ DIFDEV=DIFDEV /*检测观察体对对皮尔森卡方适合度和对偏激统计量的影响程度,越大说明与模型越不符*/
/* 还可加入的统计量:C、CBAR、DFBETAS、H、XBETA、STDXBETA */
/ ALPHA=0.1; /*界定P值的信赖度,默认为0.05,对应信赖度为95%,这里为90%*/
run;
quit;
/*
逻辑回归主程序 - 根据logistic模型对测试集进行预测(有需要时可使用独立的logistic过程对新数据进行预测)
proc logistic inmodel=model;
SCORE data=test
outroc=predict_roc;
run;
*/
/* 训练集的预测结果中只给出了预测概率,接下来根据0.5分界将观察体归到具体的类中,加一列“pred”(预测组别)*/
data train_pred;
set train_pred;
if PHAT>0.5 then pred=_LEVEL_ ; /* PHAT为logistic方程针对每个观察体计算的属于该组别的概率,若PHAT>0.5,则属于该组别(这里level为1),否则,属于另一组别 */
else pred=0;
run;
/* 输出混淆矩阵 - 训练集*/
ods output CrossTabFreqs=ct_train; /*保存混淆矩阵表(训练集)*/
ods trace on;
proc freq data=train_pred;
tables Y*pred;
run;
ods trace off;
ods output close;
proc sql;
create table acc1 as
select sum(percent) from ct_train where (Y=pred and Y ^=.);
proc print data=acc1;
title '训练集上的预测准确率';
run;
/* 输出混淆矩阵及准确率等指标 - 测试集*/
ods output CrossTabFreqs=ct_test; /*保存混淆矩阵表(测试集)*/
proc freq data=test_pred;
tables F_Y*I_Y ;
run;
ods output close;
proc sql;
create table acc2 as
select sum(percent) from ct_test where (F_Y=I_Y and F_Y ^='');
proc print data=acc2;
title '测试集上的预测准确率';
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27