京公网安备 11010802034615号
经营许可证编号:京B2-20210330
# Apriori算法实现关联规则挖掘
#======================= MODEL1. 输入数据集为transaction类型 ======================
#install.packages("arules") #Apriori算法程序包
library(arules)
data(Groceries) #调用R自带关联规则数据集Groceries(transaction类型的格式)
#-----------------------查看数据的详细信息
# Groceries数据集为杂货店一个月的交易记录集,包括169中商品项目,9835个记录
head(Groceries) #查看前6条记录
str(Groceries) #查看数据的内部结构
summary(Groceries) #查看数据的基本统计量
class(Groceries) #查看数据类型,关联规则处理的数据类型为“transactions”
dim(Groceries) #查看数据的维数 行数和列数
colnames(Groceries[,1:5]) #查看第1-5列的列名
#inspect(Groceries) #查看transactions数据集中的全部记录

#--------------------- Apriori实现关联规则
# apriori的参数设置为支持度0.01,置信度0.1,关联前项和后项包含的最小项目数为2,最大项数为15
rules=apriori(Groceries, parameter=list(support=0.01,confidence=0.1,minlen=2,maxlen=15))
# 如果需要了解某一种商品的关联情况,可以使用appearance参数,以下为探究与whole milk关联的商品,设置关联前项为whole milk,后项不限
# rules=apriori(Groceries,
parameter=list(support=0.01,confidence=0.1,minlen=2),appearance=list(lhs="whole
milk",default="rhs"))
rules #查看生成的关联规则
rules<-sort(rules,by='support') #对规则按照support从高到低排序
inspect(rules[1:10]) #查看前10条规则
# 对规则进行格式转换并输出
R1<-as(rules,'data.frame') #将关联规则设置成dataframe格式
#setwd("D:\\R files\\Data")
write.csv(R1,"Groceries_apriori.csv")
#-------------------- 关联规则可视化
#install.packages("arulesViz") #关联规则可视化程序包
library ( arulesViz )
plot(rules, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(rules,method="grouped") #作出rules的分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(rules,shading="order", control=list(main="Two‐key plot"))
#========================== MODEL2. 输入数据集为稀疏矩阵 ===========================
#setwd("D:\\R files\\Data")
# 若输入矩阵为其他形式,可转换,将其变成稀疏矩阵
# 数据集testA为简单的输入稀疏矩阵,7个项目和9条记录
testA=read.csv(file="testA.csv",as.is = T,sep=",") #读入稀疏矩阵
set<-testA
factorK<-function(X){factor(X,levels=0:1)} #建立factorK函数
T1<-as(data.frame(apply(set,2,factorK)),"transactions") #根据列对应的值是否为1建立transaction格式的数据集
T2<-apriori(T1,parameter=list(minlen=2,supp=0.3,conf=0.5)) #得到支持度0.1,置信度0.5的关联规则
T2<-sort(T2,by='support') #将关联规则按支持度从高到低排序
inspect(T2[1:10])
# 对规则进行格式转换
T3<-as(T2,'data.frame') #将关联规则设置成dataframe格式
# 画图
library ( arulesViz )
plot(T2, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(T2,method="grouped") #作出分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(T2,shading="order", control=list(main="Two‐key plot"))
# 将关联规则转换格式输出
#setwd("D:\\R files\\Data")
write.csv(T3,"testA_apriori.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12