
# Apriori算法实现关联规则挖掘
#======================= MODEL1. 输入数据集为transaction类型 ======================
#install.packages("arules") #Apriori算法程序包
library(arules)
data(Groceries) #调用R自带关联规则数据集Groceries(transaction类型的格式)
#-----------------------查看数据的详细信息
# Groceries数据集为杂货店一个月的交易记录集,包括169中商品项目,9835个记录
head(Groceries) #查看前6条记录
str(Groceries) #查看数据的内部结构
summary(Groceries) #查看数据的基本统计量
class(Groceries) #查看数据类型,关联规则处理的数据类型为“transactions”
dim(Groceries) #查看数据的维数 行数和列数
colnames(Groceries[,1:5]) #查看第1-5列的列名
#inspect(Groceries) #查看transactions数据集中的全部记录
#--------------------- Apriori实现关联规则
# apriori的参数设置为支持度0.01,置信度0.1,关联前项和后项包含的最小项目数为2,最大项数为15
rules=apriori(Groceries, parameter=list(support=0.01,confidence=0.1,minlen=2,maxlen=15))
# 如果需要了解某一种商品的关联情况,可以使用appearance参数,以下为探究与whole milk关联的商品,设置关联前项为whole milk,后项不限
# rules=apriori(Groceries,
parameter=list(support=0.01,confidence=0.1,minlen=2),appearance=list(lhs="whole
milk",default="rhs"))
rules #查看生成的关联规则
rules<-sort(rules,by='support') #对规则按照support从高到低排序
inspect(rules[1:10]) #查看前10条规则
# 对规则进行格式转换并输出
R1<-as(rules,'data.frame') #将关联规则设置成dataframe格式
#setwd("D:\\R files\\Data")
write.csv(R1,"Groceries_apriori.csv")
#-------------------- 关联规则可视化
#install.packages("arulesViz") #关联规则可视化程序包
library ( arulesViz )
plot(rules, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(rules,method="grouped") #作出rules的分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(rules,shading="order", control=list(main="Two‐key plot"))
#========================== MODEL2. 输入数据集为稀疏矩阵 ===========================
#setwd("D:\\R files\\Data")
# 若输入矩阵为其他形式,可转换,将其变成稀疏矩阵
# 数据集testA为简单的输入稀疏矩阵,7个项目和9条记录
testA=read.csv(file="testA.csv",as.is = T,sep=",") #读入稀疏矩阵
set<-testA
factorK<-function(X){factor(X,levels=0:1)} #建立factorK函数
T1<-as(data.frame(apply(set,2,factorK)),"transactions") #根据列对应的值是否为1建立transaction格式的数据集
T2<-apriori(T1,parameter=list(minlen=2,supp=0.3,conf=0.5)) #得到支持度0.1,置信度0.5的关联规则
T2<-sort(T2,by='support') #将关联规则按支持度从高到低排序
inspect(T2[1:10])
# 对规则进行格式转换
T3<-as(T2,'data.frame') #将关联规则设置成dataframe格式
# 画图
library ( arulesViz )
plot(T2, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(T2,method="grouped") #作出分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(T2,shading="order", control=list(main="Two‐key plot"))
# 将关联规则转换格式输出
#setwd("D:\\R files\\Data")
write.csv(T3,"testA_apriori.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25