
R语言典型相关分析
1 关键点:典型相关分析
典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系
例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性
将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关#
2 分类:
总体典型相关
样本典型相关
3 R语言提供的计算函数:
典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)
x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 FALSE是不中心化
4 分析结果含义
cor是典型相关系数
xcoef是对应于数据x的系数 又称关于数据x的典型载荷即样本典型变量U系数矩阵A的转置
xcenter是数据X的中心 即数据X的样本均值
y是对应于数据x的系数 又称关于数据y的典型载荷即样本典型变量V系数矩阵B的转置
ycenter是数据Y的中心 即数据Y的样本均值
5 分析步骤
(1.)载入原始数据 data.frame
(2.)原始数据标准化 scale
(3.)典型相关分析 cancor
(4.)相关系数显著性检验 corcoef.test.R
I.典型相关分析的计算
现对20名中年人测得三个生理指标:体重(X1) 腰围(X2) 脉搏(X3);三个训练指标:引体向上(Y1) 起座次数(Y2) 跳跃次数(Y3) 试分析这组数据的相关性
#用数据框的形式输入数据矩阵
test<-data.frame(
X1=c(191, 193, 189, 211, 176, 169, 154, 193, 176, 156,
189, 162, 182, 167, 154, 166, 247, 202, 157, 138),
X2=c(36, 38, 35, 38, 31, 34, 34, 36, 37, 33,
37, 35, 36, 34, 33, 33, 46, 37, 32, 33),
X3=c(50, 58, 46, 56, 74, 50, 64, 46, 54, 54,
52, 62, 56, 60, 56, 52, 50, 62, 52, 68),
Y1=c( 5, 12, 13, 8, 15, 17, 14, 6, 4, 15,
2, 12, 4, 6, 17, 13, 1, 12, 11, 2),
Y2=c(162, 101, 155, 101, 200, 120, 215, 70, 60, 225,
110, 105, 101, 125, 251, 210, 50, 210, 230, 110),
Y3=c(60, 101, 58, 38, 40, 38, 105, 31, 25, 73,
60, 37, 42, 40, 250, 115, 50, 120, 80, 43)
)
#为了消除数量级的影响 将数据标准化处理 调用scale函数
test<-scale(test)
#对标准化的数据做典型相关分析
ca<-cancor(test[,1:3],test[,4:6])
#查看分析结果
ca
结果说明:
1) cor给出了典型相关系数;xcoef是对应于数据X的系数, 即为关于数据X的典型载荷; ycoef为关于数据Y的典型载荷;xcenter与$ycenter是数据X与Y的中心, 即样本均值;
2) 对于该问题, 第一对典型变量的表达式为
U1 = -0.17788841x1 + 0.36232695x2 - 0.01356309x3
U2 = -0.43230348x1 + 0.27085764x2 - 0.05301954x3
U3 = -0.04381432x1 + 0.11608883x2 + 0.24106633x3
V1 = -0.08018009y1 - 0.24180670y2 + 0.16435956y3
V2 = -0.08615561y1 + 0.02833066y2 + 0.24367781y3
V3 = -0.29745900y1 + 0.28373986y2 - 0.09608099y3
相应的相关系数为:p(U1,V1)=0.79560815 ,p(U2,V2)=0.20055604 ,p(U3,V3)=0.07257029
可以进行典型相关系数的显著性检验, 经检验也只有第一组典型变量.
下面计算样本数据在典型变量下的得分:
#计算数据在典型变量下的得分 U=AX V=BY
U<-as.matrix(test[, 1:3])%*% ca$xcoef ; U
V<-as.matrix(test[, 4:6])%*% ca$ycoef ; V
#调整图形
opar <- par(mfrow = c(1, 1),mar = c(5,4,1,1))
#画出以相关变量U1、V1和U3、V3为坐标的数据散点图
plot(U[,1], V[,1], xlab="U1", ylab="V1")
plot(U[,3], V[,3], xlab="U3", ylab="V3")
#调整图形
par(opar)
由散点图可知 第一典型相关变量分布在一条直线附近;第三典型相关变量数据很分散。因为第一典型变量其相关系数为0.79560815,接近1,所以在一直线附近;第三典型变量的相关系数是0.07257029,接近于0,所以很分散。
II.典型相关系数的显著性检验
作为相关分析的目的 就是选择多少对典型变量?因此需要做典型相关系数的显著性检验。若认为相关系数k为0 就没有必要考虑第k对典型变量了
#相关系数检验R程序
corcoef.test<-function(r, n, p, q, alpha=0.1){
#r为相关系数 n为样本个数 且n>p+q
m<-length(r); Q<-rep(0, m); lambda <- 1
for (k in m:1){
#检验统计量
lambda<-lambda*(1-r[k]^2);
#检验统计量取对数
Q[k]<- -log(lambda)
}
s<-0; i<-m
for (k in 1:m){
#统计量
Q[k]<- (n-k+1-1/2*(p+q+3)+s)*Q[k]
chi<-1-pchisq(Q[k], (p-k+1)*(q-k+1))
if (chi>alpha){
i<-k-1; break
}
s<-s+1/r[k]^2
}
#显示输出结果 选用第几对典型变量
i
}
source("corcoef.test.R")
#输入相关系数r,样本个数n,两个随机向量的维数p和q,置信水平a(缺省值为0.1)
corcoef.test(r=ca$cor,n=20,p=3,q=3)
#程序输出值为典型变量的对数
最终程序运行结果显示选择第一对典型相关变量。我们只利用第一典型变量分析问题,达到降维的目的。
write.csv(test,"test_test.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10