京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言典型相关分析
1 关键点:典型相关分析
典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系
例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性
将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关#
2 分类:
总体典型相关
样本典型相关
3 R语言提供的计算函数:
典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)
x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 FALSE是不中心化
4 分析结果含义
cor是典型相关系数
xcoef是对应于数据x的系数 又称关于数据x的典型载荷即样本典型变量U系数矩阵A的转置
xcenter是数据X的中心 即数据X的样本均值
y是对应于数据x的系数 又称关于数据y的典型载荷即样本典型变量V系数矩阵B的转置
ycenter是数据Y的中心 即数据Y的样本均值
5 分析步骤
(1.)载入原始数据 data.frame
(2.)原始数据标准化 scale
(3.)典型相关分析 cancor
(4.)相关系数显著性检验 corcoef.test.R
I.典型相关分析的计算
现对20名中年人测得三个生理指标:体重(X1) 腰围(X2) 脉搏(X3);三个训练指标:引体向上(Y1) 起座次数(Y2) 跳跃次数(Y3) 试分析这组数据的相关性
#用数据框的形式输入数据矩阵
test<-data.frame(
X1=c(191, 193, 189, 211, 176, 169, 154, 193, 176, 156,
189, 162, 182, 167, 154, 166, 247, 202, 157, 138),
X2=c(36, 38, 35, 38, 31, 34, 34, 36, 37, 33,
37, 35, 36, 34, 33, 33, 46, 37, 32, 33),
X3=c(50, 58, 46, 56, 74, 50, 64, 46, 54, 54,
52, 62, 56, 60, 56, 52, 50, 62, 52, 68),
Y1=c( 5, 12, 13, 8, 15, 17, 14, 6, 4, 15,
2, 12, 4, 6, 17, 13, 1, 12, 11, 2),
Y2=c(162, 101, 155, 101, 200, 120, 215, 70, 60, 225,
110, 105, 101, 125, 251, 210, 50, 210, 230, 110),
Y3=c(60, 101, 58, 38, 40, 38, 105, 31, 25, 73,
60, 37, 42, 40, 250, 115, 50, 120, 80, 43)
)
#为了消除数量级的影响 将数据标准化处理 调用scale函数
test<-scale(test)
#对标准化的数据做典型相关分析
ca<-cancor(test[,1:3],test[,4:6])
#查看分析结果
ca
结果说明:
1) cor给出了典型相关系数;xcoef是对应于数据X的系数, 即为关于数据X的典型载荷; ycoef为关于数据Y的典型载荷;xcenter与$ycenter是数据X与Y的中心, 即样本均值;
2) 对于该问题, 第一对典型变量的表达式为
U1 = -0.17788841x1 + 0.36232695x2 - 0.01356309x3
U2 = -0.43230348x1 + 0.27085764x2 - 0.05301954x3
U3 = -0.04381432x1 + 0.11608883x2 + 0.24106633x3
V1 = -0.08018009y1 - 0.24180670y2 + 0.16435956y3
V2 = -0.08615561y1 + 0.02833066y2 + 0.24367781y3
V3 = -0.29745900y1 + 0.28373986y2 - 0.09608099y3
相应的相关系数为:p(U1,V1)=0.79560815 ,p(U2,V2)=0.20055604 ,p(U3,V3)=0.07257029
可以进行典型相关系数的显著性检验, 经检验也只有第一组典型变量.
下面计算样本数据在典型变量下的得分:
#计算数据在典型变量下的得分 U=AX V=BY
U<-as.matrix(test[, 1:3])%*% ca$xcoef ; U
V<-as.matrix(test[, 4:6])%*% ca$ycoef ; V
#调整图形
opar <- par(mfrow = c(1, 1),mar = c(5,4,1,1))
#画出以相关变量U1、V1和U3、V3为坐标的数据散点图
plot(U[,1], V[,1], xlab="U1", ylab="V1")
plot(U[,3], V[,3], xlab="U3", ylab="V3")
#调整图形
par(opar)
由散点图可知 第一典型相关变量分布在一条直线附近;第三典型相关变量数据很分散。因为第一典型变量其相关系数为0.79560815,接近1,所以在一直线附近;第三典型变量的相关系数是0.07257029,接近于0,所以很分散。
II.典型相关系数的显著性检验
作为相关分析的目的 就是选择多少对典型变量?因此需要做典型相关系数的显著性检验。若认为相关系数k为0 就没有必要考虑第k对典型变量了
#相关系数检验R程序
corcoef.test<-function(r, n, p, q, alpha=0.1){
#r为相关系数 n为样本个数 且n>p+q
m<-length(r); Q<-rep(0, m); lambda <- 1
for (k in m:1){
#检验统计量
lambda<-lambda*(1-r[k]^2);
#检验统计量取对数
Q[k]<- -log(lambda)
}
s<-0; i<-m
for (k in 1:m){
#统计量
Q[k]<- (n-k+1-1/2*(p+q+3)+s)*Q[k]
chi<-1-pchisq(Q[k], (p-k+1)*(q-k+1))
if (chi>alpha){
i<-k-1; break
}
s<-s+1/r[k]^2
}
#显示输出结果 选用第几对典型变量
i
}
source("corcoef.test.R")
#输入相关系数r,样本个数n,两个随机向量的维数p和q,置信水平a(缺省值为0.1)
corcoef.test(r=ca$cor,n=20,p=3,q=3)
#程序输出值为典型变量的对数
最终程序运行结果显示选择第一对典型相关变量。我们只利用第一典型变量分析问题,达到降维的目的。
write.csv(test,"test_test.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12