京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的呼叫中心客服运营管理
一、数据优势
米领通信呼叫中心既是数据的集中者,也是数据的制造者。每个月100多万通的话务中包含了大量有价值的信息和能力:在用户呼入中蕴涵客户类型、业务类型、客户信息、话务信息;在接话的数据中蕴涵了系统能力、班组能力、员工能力;在日常运营的管理数据中又体现出运营能力、执行能力、心态意愿。
二、数据的应用
(一)客户来电目的预判
知己知彼,百战不殆。在客户进入人工座席之前如何利用大数据准确判断客户的呼入目的,给予客服代表精确的指引,是客服代表最为希望拥有的能力,而客户的目的往往隐藏在大数据当中,利用以往运营经验结合大数据资源建立客户预判模型就能完美地解决这个困难。那如何建立这个客户预判模型呢?根据用户重复联系和首次联系的不同,从两个层面进行数据挖掘:
1、重复联系:协同获取用户前一次联系信息(协同包含语音客服、文字客服、APP等各渠道用户联系信息),根据用户首次反馈信息给予预判指引。
2、首次联系:(1)根据IVR语音导航中客户按键信息预判指引。
(2)根据客户资产重要数据信息给予指引,例如用户账户有充值、欠费、套餐用超、套餐协议到期判断、符合公司当前重点活动目标客户条件判断等信息给予预判指引。通过这些数据的收集来预判客户可能的来电目的并给予客服代表精确的提醒,从而达到精确服务和精确营销的客户服务目标。
(二)话务结构监控
在每日3万多通的客户呼入中如何及时发现异常情况的出现是困扰很多大型呼叫中心的难题,每天有200多人接话,靠人工干预判断来发现一些影响面不是特别大的异常话务根本不太可能,而大数据管理恰恰完美解决了这一难题。10000号的话务主要是由故障、账务、业务咨询、投诉等话务类型组成,而这些话务由于不同时间点,包括月初月底、周末、早晚等差异有着不同结构的变化,同时还受每月出账、欠费停机等固定业务周期的影响。虽然呼入话务总数量上偶有不同,但整个话务组成结构基本是稳定的,而话务监控所要做的就是统计出这些节点中所有话务构成的占比,建立数据评估模型,一旦话务结构出现变化就能准确发现是哪一类型的问题造成,为下一步精确评估提供了有力的依据,另外这一话务结构监控也为排班、能力提升安排等日常运营管理提供了有效的数据支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31