京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据、人工智能助力攻克司改难题 将成为司法运行新模式
在今年的全国司法体制改革推进会上,记者深切感受到,即将来临的大数据、人工智能新时代,给司法体制改革带来了广阔的发展前景,为全国政法机关探索司法运行新模式,提升司法质量效率和公信力提供了强有力的支撑。
这其中最具代表性的是上海、贵州两地,他们在推进以审判为中心的刑事诉讼制度改革中,创造性地运用大数据、人工智能破解难题,探索了一条司法体制改革和现代科技应用融合的新路子。
人情因素在机器面前停步 公检法都在“一把尺子”下办案
以审判为中心的刑事诉讼制度改革,涉及到公检法三机关司法职权配置,事关人权保障和有效打击犯罪,而当前制约此项改革推进的因素有三个方面:一是对证据标准理解不统一,公检法各有自己的证据标准;二是受传统司法理念和人情因素影响,证据的收集、审查、运用缺乏刚性;三是法官、检察官、警官个体认知和经验水平的差异,导致办案存在主观性倾向。
大数据和人工智能则可以有效攻克这三道难题。“它通过全样本收集、储存、分析,从‘以偏概全’跨越到‘以全概全’,通过数据的无偏好增强了法官的中立性,通过对流程进行刚性再造,实现办案责任结果和过程的统一。”贵州省高级人民法院院长孙潮在会上说到,“人情因素在不为所动的机器面前停步,选择性执法、通融性规避、偏好性执纪得以避免。”
由于公检法三家对什么案件需要达到什么样的证据标准,没有统一认识,缺乏统一的证据标准指引,补查补证有一定的任意性。要改变这一状况,制定公检法三家统一的证据标准指引势在必行。
为了获得有针对性的证据标准指引,贵州省公安厅依托大数据技术,通过抽样、建模等手段,对五年以来60余万件常见多发的盗窃、抢劫、故意伤害、故意杀人和毒品等五类案件进行分析研判,总结出刑事案件受立案、侦查取证、文书制作三个环节总计67项常见问题。
与此同时,贵州省检察院成立专门研发小组,集合案管、公诉等业务部门与技术部门一道,依据刑法、刑诉法等法律规定,梳理影响定罪量刑的法定或酌定的事项、行为、情节等,形成案件要素,通过分析案件要素与证据材料的关联关系,根据案件定罪要素、量刑要素、证据材料、证据要求构建了犯罪构成的知识图谱。
以大数据梳理的常见问题为司法实践基础,以犯罪构成知识图谱为理论基础,贵州省法院、检察院、公安厅共同研究出台了“贵州省五类案件证据标准指引”。
“把这个统一的证据要求,在侦查、检察、审判机关里面拆分,结合各自的职能职责,侦查机关做侦查机关的,检察机关做检察机关的,审判机关做审判机关的,他们是同一套要求,同一套标准,但是侧重点不一样。”贵州省人民检察院信息中心主任冯涛告诉记者。
构建共享共用的跨部门大数据办案平台 成为办案“好助手”
大数据、人工智能新时代,连接比拥有、共享比分担更有意义。2017年1月,嵌入了证据标准指引模块的政法大数据办案系统在贵阳市花溪区正式运行,要求公检法三家应用该系统进行案件流转,在系统中嵌入证据标准指引应用模块,如果不符合证据标准指引的要求,案件将无法流转至下一环节。
半年多的实践证明,这套系统不仅能够提高办案效能,而且提升了办案质量。
“政法大数据办案系统的运用,给我们启发很大,现在我们办案子不仅仅要破案、审讯,还得注重案子后续的程序。给我最大的帮助就是能够提供更多的证据性的标准,相当于给我一个老师,这个老师是非常公正,非常客观的。从一开始就去注重证据,或者时效性的东西,操作起来也会比较简单。”贵阳市公安局花溪分局民警王练说到。
通过政法大数据办案系统,诉辩双方都对案件事实证据进行了充分的审查分析,案件到了法院,庭审的质量和效率就得到了很大提高。
目前,贵州省刑事审判智能辅助系统与政法大数据办案系统也已实现数据交互,法官在自己的业务系统中即可办理案件。
2017年2月,上海也同样开始研发刑事案件智能辅助办案系统。目前已具备证据标准指引、单一证据合法、合规性校验以及证据链完整性审查判断等多项功能。
那么,飞速发展的人工智能技术,能不能取代办案人员决定案情?
上海市高级人民法院院长崔亚东这样回答,“机器可以挑出案件的矛盾点,可以找出案件的瑕疵,但是机器对什么样的证据可以用,什么样的证据不能用,目前机器是做不到的。所以必须要法官通过庭审,通过对整个案件的事实的综合来进行判断。”
贵州和上海的大胆探索启示我们,现代科技应用迈出一小步,可以推动刑事司法文明前进一大步。全国政法机关只要坚持从我国国情出发,遵循司法规律,善于把制度优势和技术优势结合起来,我们就能走出一条社会主义刑事司法文明发展之路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04