
使用R语言进行中文分词
1.准备包
①rJava包
② Rwordseg包
③Java环境
④搜狗词库(此为扩展词库)
Rwordseg包依赖于rJava包。由于Rwordseg包并没有托管在CRAN上面,而是在R-Forge上面,因此在在R软件上面直接输入install.packages("Rwordseg")会提示错误。因此,我们需要在软件菜单栏点击 程序包
选择软件库 在选择R-Forge 即可,然后输入install.packages("Rwordseg")应该就OK了。或者输入下面代码:
[plain]view plaincopy
install.packages("Rwordseg", repos = "http://R-Forge.R-project.org")
一切准备工作做好了我们就可以进行分词了。首先加载我们所需要的包。然后对“ 我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号 ”这句话进行分词。
[plain]view plaincopy
library(Rwordseg)
library(rJava)
text<-"我非常喜欢《跟着菜鸟一起学R语言》这个微信公众号"
segmentCN(text)
分词结果为:
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
我们可以发现这个分词有问题,比如说 “菜鸟”和“公众号”是一个词,但这里却分开了。我们该怎么处理呢?Rwordseg包里面提供了一个insertWords函数,具体如下
[plain]view plaincopy
insertWords(strwords,
analyzer = get("Analyzer", envir = .RwordsegEnv),
strtype = rep("userDefine", length(strwords)),
numfreq = rep(1000, length(strwords)), save = FALSE)
这就是insertWords函数,其中save参数是指 是否把这个词保存到词典里面。
[plain]view plaincopy
insertWords(c("菜鸟","公众号"),save=TRUE)
这样的话,菜鸟 和 公众号 就成两个词了。再次运行
结果为
[1] "我" "非常" "喜欢" "跟" "着" "菜鸟" "一起" "学" "R语言" "这个" "微信" "公众号"
但是如果我们不需要“菜鸟”这个分词了怎么办,这个时候我们就可以使用deleteWords()函数来从词典中删除这个分词。
[plain]view plaincopy
deleteWords(c("菜鸟","公众号"),save=TRUE)
这次我们在看看结果。
[1] "我" "非常" "喜欢" "跟" "着" "菜" "鸟" "一起" "学" "R语言" "这个" "微信" "公众" "号"
接下来我们使用一下搜狗的扩展词库,由于电影跟新速度较快,我这里下载了搜狗的热门电影大全词库,如何加载使用搜狗词库,点击可以查看我的另一篇博客。
[plain]view plaincopy
installDict("热门电影大全.scel","movie")
59391 words were loaded! ... New dictionary 'movie' was installed!
我把下载的词库放在了当前的工作目录下面了,所以直接输入词典名,没有添加地址。加载了该词典。如果出现上面的句子则表示这个词典加载成功了,我们命名为movie。
现在我们来测试一下面这个句子: 你喜欢看最后的巫师猎人吗
[plain]view plaincopy
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
"你" "喜欢" "看" "最后的巫师猎人" "吗"
可以看到“最后的巫师猎人”是一个词,如何我们把movie这个词典删除点会怎么样呢?
[plain]view plaincopy
uninstallDict("movie")
text2<-"你喜欢看最后的巫师猎人吗"
segmentCN(text2)
[1] "你" "喜欢" "看" "最后" "的" "巫师" "猎人" "吗"
其实加载搜狗词典的话我们就不用自己定义词典,就比如前面我们往词典里面插入“菜鸟”和“微信公众号”一样。这样可以很方便的分词,也省去了自己新建词典的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26