
人工智能和机器学习从模拟到超越人类
人工智能和机器学习两项前端技术已经成为了企业和消费者中的热词,但两者间的关系知道的人就要少很多。
人工智能和机器学习你俩啥关系
人工智能在很多行业都是个热门话题, 其应用已经开始深入到生活之中,我们每天都难免会和人工智能打交道。从机器人被用于各种工业制造、到Siri、Cortana等各类语音助手的兴起,再到各种智能设备的使用,人工智能作为一种工具,对生活的影响以及开始。
在过去,人工智能的形象并不好,无论是终结者还是霍金的警告,甚至是横扫棋坛的AlphaGo,人工智能都在以会对人类产生威胁的形象存在。但是,人工智能的本质真的如此吗?机器学习是否也是如此呢?
AlphaGo击败柯洁的秘诀在于跟自己下棋
机器学习在一些平台和解决方案之中,其表现往往超越了人类。而在广泛领域中的概念,机器学习是使智能设备通过模拟人类的机械运动、推理方式和解决问题的方法,来实现作业目标。
而由于机器学习的优秀表现,很多方面已经开始取代人类的表现。比如谷歌深度学习技术部门所推出的AlphaGo,已经成功的击败了我国的围棋世界排名世界第一的选手柯洁;而其他项目中,如无人驾驶和图像识别平台,其看待环境的可靠性和准确性均已经超越了人类在该领域的表现。
关系来看,机器学习是人工智能的一种应用,即以统计和数据驱动的方式来创造人工智能,帮助计算机程序改善性能并且完成学习任务。机器学习非常依赖数据,数据的质量或者创建数据的过程对于机器学习的成败至关重要。
2机器学习不简单
机器学习不简单
机器学习看起来简单,但是其并不容易。比如检测一个图形,在我们看来很容易,可是机器学习就要复杂很多。
举例来看,当创建了一个项目之后,需要其去寻找苹果的图片。通过将各种食物的照片进行对比后,我们需要收集苹果的数据特点,例如颜色是绿色或红色、圆的、有柄等。同样重要的是,项目在进行中还需要搜索区别开苹果的食物,比如香蕉是黄色狭长的,梨可能是绿色的,但是形状是瓢形,柄长等,这样可以避免选择了错误的水果。而如果数据出现错误或误差,那就会直接影响最终结果的准确性。
数据是机器学习的老师
当得到了需要的数据之后,就可以对这些数据贴标签并且进行分类,这就像进行一个棋盘类游戏一样。机器学习首先会在图形分类中犯很多错误,但是优势在于,机器学习会像圣斗士一样,不会被同一个错误击败两次,然后将其性能提高后再进行下一次尝试。
机器学习作为人工智能的一种应用,当其被应用于电脑上的时候,其学习任务的第一件事就是先对过去的历史数据进行检阅。由此,其可以通过自己的不断适应和理解来预测未来可能会出现的一个特定的场景。而当电脑学会了以这种方式来处理历史数据之后,其智能性会比此前更高,就可以当做是一种智能产品。
机器学习依赖数据的正确性
从历史数据中学习的方式是目前最成功的一种机器学习方法,其也产生了许多不同类型的人工智能设备。但是这种方法的最大限制就在于其信息必须是已知的,而且必然是来自于人类。
3人工智能不智能
人工智能不智能
如果只是在模仿人类,那么采用了机器学习的人工智能机器人是不可能超越人类的。但是,真正的人工智能绝非仅仅如此。
模仿人类不能是真真的智能
我们目前的人工智能所能够做到的效果有很多,比如在听音乐或者看视频的时候,会被按照个人喜好来推荐节目;通过追踪过去的购物和浏览习惯,购物网站推荐相应的产品或者服务等。这些平台中的应用仅仅只是在进行标准化的推送,其智能程度不过是在人类的教育之后形成的一种程序化进行。
而人工智能设备并不一定是像电影里一样,让每个人都有专属的机器人服务。事实上,我们需要的也不是机器,在服务中现如今已经有Siri、Alexa、Cortana等多种产品被认为很聪明,可是其依然不能算上真正的智能。
机器学习还能进步
这些平台或者应用的基础都是机器学习,借助机器学习,一些平台可以对大规模的数据集以毫秒为单位进行识别,然后模拟人类迅速评估一个场景,但是这种计算任务在现如今的标准的计算机之中可能会有难度。
而对机器学习创建预测规则集和模式识别的行为模式,其可以达到超越机器学习甚至不包括机器学习的方式来实现路线规划、系统调度、生产线掌握或者平台掌控等。这就达到了另一种人工智能的模式。
4人工智能不做第二个谁
回归到人工智能和机器学习的本质来看,机器学习正在逐渐的偏离原来模仿人类的方向,却在趋向真正的人工智能方向。人类和人工智能之间的智力差距正在缩小,人工智能正在变得越来越聪明,甚至在特定领域超越人类,因此拒绝模仿人类对人工智能的发展是有利的。
人工智能的发展一定会超越人类
当前有观点认为,人类甚至在高端的科研领域会被人工智能超越,因为计算等任务显然是人工智能更优,让人工智能脱离模仿人类的桎梏,让其积累更多的知识,即数据基础,人工智能的创新能力不可忽视,因此如果未来在实验室之中是人工智能为主力,人类只是打下手也不要惊讶。
霍金的警告不能忽视
人工智能和机器学习都是当前十分热门的技术,二者相伴相生。但是从模仿人类到超越人类,这一切的前提都需要有着如霍金一般的警觉,前提都是不能伤害人类,必须要以为人类服务为底线,这样才能更好的发展技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23