
利用QQ群进行数据挖掘案例,数据源来源于2016年12-2017年大致一个月的QQ群基本数据,通过对聊天内容的分析,了解QQ聊天群资料了解时间,人群以及关键词,并构建相应图表、云图等,下图为本人所在提取的QQ群:
以下是R代码部分:
file.data<-scan("C:/Users/admin/Desktop/数据挖掘机器学习R-Hive.txt",what="",sep="\n",encoding="UTF-8")
#数据清洗
clean<-function(file.data){
data<-data.frame(user.name=c(),time=c(),text=c())
user.name=c();time=c();text=c();
for(i in 6:length(file.data))
{
reg.time<-regexpr("[0-9]{4}-[0-9]{2}-[0-9]{2}[0-9]+:[0-9]+:[0-9]+",file.data[i])
if(reg.time==1){#该行取到了时间信息
data<-rbind(data,data.frame(user.name=user.name,time=time,text=text))
text=c("1")
begin<-reg.time
end<-reg.time+attr(reg.time,"match.length")-1
time=substr(file.data[i],begin,end)
begin=reg.time+attr(reg.time,"match.length")+1
end<-nchar(file.data[i])
user.name<-substr(file.data[i],begin,end)#读取用户名信息
}
else{text=paste(text,file.data[i])}
}
return(data)}
data<-clean(file.data)#数据结构化
#活跃度计算
d1=table(data[,1])>d = data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;>d=d[order(d[,3],decreasing=T),]
#由于测试群记录数据量,后期效果不是很明显。这也是大数据火的原因吧?
>dim(d1)[1] 29>length(data[,1])[1] 164#转换数据类型data$name<-as.character(data$user.name)data$text<-as.character(data$text)data$datatime<-as.POSIXlt(data$time)#整理账期的年、月、日、时、分、秒部分
> data <- transform(data,
+ year = datatime$year+1900,
+ month = datatime$mon+1,
+ day = datatime$mday,
+ hour = datatime$hour,
+ min = datatime$min,
+ sec = datatime$sec)
>
> d1=table(data[,1])
> d = data.frame(word = names(d1),freq =d1,stringsAsFactors = F) ;
> d=d[order(d[,3],decreasing=T),]
> head(d)
# 活跃度统计
#去掉停用词
mixseg = worker()
textt=paste(as.character(data[,3]),sep="",collapse ="")
textt<-mixseg<=textt
t=unlist(textt)
cnword<-read.csv("C:/Users/admin/Desktop/几个停用词.txt",header=F,stringsAsFactors=F)
cnword<-as.vector(cnword[1:dim(cnword)[1],])#需要为向量格式
t=t[!t%in%cnword]#去停用词
t1=table( t )
plot(t1) 初步查看分词不是很理想,继续调整
> d =data.frame(word = names(d1),freq = d1,stringsAsFactors = F) ;
>d=d[order(d[,3],decreasing=T),]
>d=d[nchar(as.character(d$word))>1,]
>write.table(d,"C:/Users/admin/Desktop/几个停用词.txt聊天内容词频排名.csv",sep=",",row.names = F)
>t1=t1[!names(t1)%in%c("男神","女神","你懂的")]#去没有意义的词
> library(Rwordseg)
t1=t1[nchar(as.character(names(t1)))==2]
plot(t1,xlab="词组",ylab="词频") #效果实例而已,好的数据会有好的效果。
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
---------用wordcloud进行过程-------------------------------------
#分词后的词语频率汇总
> wdfreq <- as.data.frame(table(t1))
> head(wdfreq)
t1Freq
1 1 14
2 2 1
3 7 2
#频数排序 **
wdfreq<-rev(sort(wdfreq$Freq))
------------------------------------------------------
#使用wordcloud2构造云图
wordcloud2(t1,size=2,fontFamily='SegoeUI')
> datax=substr(data[,2],1,10)#得到日期,不要时分秒
> a=table(datax)
> plot(a,xlab="日期",ylab="频数",main="参与聊天人数/日期")
data1=data.frame(user.name=data[,1],data=substr(data[,2],1,10),time=substr(data[,2],12,regexpr(":",data[,2])-1),text=data[,3])
#write.table(data1," C:/Users/admin/Desktop/.细分数据.csv",sep=",",row.names = F)
a=table(data1[,3])
plot(a,xlab="日期",ylab="频数",col=4,main="参与聊天人数/二十小时分布")
WORDCLOUD2常用参数:
(1)data:词云生成数据,包含具体词语以及频率;
(2)size:字体大小,默认为1,一般来说该值越小,生成的形状轮廓越明显;
(3)fontFamily:字体,如‘微软雅黑’;
(4)fontWeight:字体粗细,包含‘normal’,‘bold’以及‘600’;;
(5)color:字体颜色,可以选择‘random-dark’以及‘random-light’,其实就是颜色色系;
(6)backgroundColor:背景颜色,支持R语言中的常用颜色,如‘gray’,‘blcak’,但是还支持不了更加具体的颜色选择,如‘gray20’;
(7)minRontatin与maxRontatin:字体旋转角度范围的最小值以及最大值,选定后,字体会在该范围内随机旋转;
(8)rotationRation:字体旋转比例,如设定为1,则全部词语都会发生旋转;
(9)shape:词云形状选择,默认是‘circle’,即圆形。还可以选择‘cardioid’(苹果形或心形),‘star’(星形),‘diamond’(钻石),‘triangle-forward’(三角形),‘triangle’(三角形),‘pentagon’(五边形);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27