
R之KNN算法
KNN(k-Nearest Neighbor)分类算法是数据挖掘分类技术中较简单的方法之一。所谓k最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
例如,上图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
KNN分类算法,是一个理论上比较成熟的方法,也是较简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
KNN算法流程:
1. 准备数据,对数据进行预处理
2. 选用合适的数据结构存储训练数据和测试元组
3. 设定参数,如k
4. 维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列
5. 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L与优先级队列中的最大距离Lmax
6. 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。
7. 遍历完毕,计算优先级队列中k个元组的多数类,并将其作为测试元组的类别。
8. 测试元组集测试完毕后计算误差率,继续设定不同的k值重新进行训练,最后取误差率最小的k值。
KNN算法优点:
1. 简单,易于理解,易于实现,无需估计参数,无需训练;
2. 适合对稀有事件进行分类;
3. 特别适合于多分类问题(multi-modal,对象具有多个类别标签),kNN比SVM的表现要好;
KNN算法缺点:
1. 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果;
2. 计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点;
3. 可理解性差,无法给出像决策树那样的规则;
R语言中有kknn的package实现了weighted k-nearest neighbor,用法如下:
kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = "contr.dummy", ordered = "contr.ordinal"))
参数:
formula A formula object.
train Matrix or data frame of training set cases.
test Matrix or data frame of test set cases.
na.action A function which indicates what should happen when the data contain ’NA’s.
k Number of neighbors considered.
distance Parameter of Minkowski distance.
kernel Kernel to use. Possible choices are
"rectangular" (which is standard unweighted knn),
"triangular",
"epanechnikov" (or beta(2,2)),
"biweight" (or beta(3,3)),
"triweight" (or beta(4,4)),
"cos",
"inv",
"gaussian",
"rank"
"optimal".
ykernel Window width of an y-kernel, especially for prediction of ordinal classes.
scale Logical, scale variable to have equal sd.
contrasts A vector containing the 'unordered' and 'ordered' contrasts to use
kknn的返回值如下:
fitted.values Vector of predictions.
CL Matrix of classes of the k nearest neighbors.
W Matrix of weights of the k nearest neighbors.
D Matrix of distances of the k nearest neighbors.
C Matrix of indices of the k nearest neighbors.
prob Matrix of predicted class probabilities.
response Type of response variable, one of continuous, nominal or ordinal.
distance Parameter of Minkowski distance.
call The matched call.
terms The 'terms' object used.
class包中的knn()函数提供了一个标准的kNN算法实现,用法如下:
knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)
参数:
train matrix or data frame of training set cases.
test matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case.
cl factor of true classifications of training set
k number of neighbours considered.
l minimum vote for definite decision, otherwise doubt. (More precisely, less than k-l dissenting votes are allowed, even if k is increased by ties.)
prob If this is true, the proportion of the votes for the winning class are returned as attribute prob.
use.all controls handling of ties. If true, all distances equal to the kth largest are included. If false, a random selection of distances equal to the kth is chosen to use exactly k neighbours.
kknn的返回值如下:
Factor of classifications of test set. doubt will be returned as NA.
实例1:
> library(kknn)
> data(iris)
> m <- dim(iris)[1]
> val <- sample(1:m, size = round(m/3), replace = FALSE, prob = rep(1/m, m)) # 选取采样数据
> iris.learn <- iris[-val,] # 建立训练数据
> iris.valid <- iris[val,] # 建立测试数据
# 调用kknn,formula Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris.kknn <- kknn(Species~., iris.learn, iris.valid, distance = 1, kernel = "triangular")
> summary(iris.kknn)
> fit <- fitted(iris.kknn) # 获取fitted.values
> table(iris.valid$Species, fit) # 建立表格检验判类准确性
> pcol <- as.character(as.numeric(iris.valid$Species))
> pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")[(iris.valid$Species != fit)+1])
实例2:
使用UCI机器学习数据仓库(UCI Machine Learning Repository)的“威斯康星乳腺癌诊断”(Breast Cancer Wisconsin Diagnostic)的数据集,该数据集可以从网站https://archive.ics.uci.edu/ml/获得。乳腺癌数据包括569例细胞活检案例,每个案例32个特征。
0. 准备数据
> wbcd<-read.csv('wdbc.data',stringsAsFactors = FALSE)
> str(wbcd)
> wbcd<-wbcd[-1]
> table(wbcd$diagnosis)
> wbcd$diagnosis<-factor(wbcd$diagnosis,levels=c('B','M'),labels=c('Begin','Malignant'))
> round(prop.table(table(wbcd$diagnosis))*100, digits=1)
1. 转换-min-max标准化数值型数据
> normalize <-function(x){
+ return( (x-min(x)) / (max(x)-min(x)) )
+ }
> wbcd_n <-as.data.frame(lapply(wbcd[2:31],normalize))
> #summary(wbcd_n$mqj1)
2. 数据准备-创建训练集和测试集
> wbcd_train <- wbcd_n[1:469,]
> wbcd_test <- wbcd_n[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
3. 训练模型
> install.packages('class')
> library(class)
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
4. 评估性能
> install.packages('gmodels')
> library(gmodels)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5. 提高模型的性能
5.1 Z-score标准化
> wbcd_z <-as.data.frame(scale(wbcd[-1]))
> wbcd_train <- wbcd_z[1:469,]
> wbcd_test <- wbcd_z[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5.2 测试其他的K值
变换K的大小,测试假阴性和假阳性。尽量避免假阴性,但是会以增加假阳性代价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10