
R之回归分析广义线性模型(Generalized Linear Model)glm
1. 介绍
广义线性模型(Generalized Linear Model)是一般线性模型的推广,它使因变量的总体均值通过一个非线性连接函数而依赖于线性预测值,允许响应概率分布为指数分布族中的任何一员。许多广泛应用的统计模型都属于广义线性模型,如常用于研究二元分类响应变量的Logistic回归、Poisson回归和负二项回归模型等。一个广义线性模型包含以下三个部分:
①随机成分。
②线性成分。
③连接函数g。
各种常见的指数型分布及其主要参数
典型的连接函数及对应分布
广义线性模型的参数估计一般不能用最小二乘估计,常用加权最小二乘法或最大似然法估计,各回归系数β需用迭代方法求解。
2. 实现
R提供了拟合广义线性模型的函数glm(),其调用格式为
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
其中,
formula为拟合公式,与函数lm()中的参数formula用法相同;
family用于指定分布族,包括正态分布(gaussian)、二项分布(binomial)、泊松分布(poisson)和伪伽马分布(Gamma);
分布族还可以通过选项link来指定连接函数,默认值为family=gaussian (link=identity),二项分布默认值为family=binomial(link=logit);
data指定数据集;
offset指定线性函数的常数部分,通常反映已知信息;
control用于对待估参数的范围进行设置。
例:
车险保单索赔次数分组数据
已知索赔次数服从泊松分布,相应的连接函数常用对数连接函数,模型可以写为
下面用R实现,首先建立数据集,分类变量直接输入定性的取值即可,glm()分析时会自动转换成矩阵X,注意参数family的写法。
> dat=data.frame(
y=c(42, 37, 10, 101, 73, 14),
n=c(500, 1200, 100, 400, 500, 300),
type=rep(c('小','中','大'),2),
gender=rep(c('男','女'),each=3)
)
> dat$logn=log(dat$n) #风险暴露数取对数
#offset风险单位数事先已知
> dat.glm=glm(y~type+gender,offset=logn,data=dat,family=poisson(link=log))
> summary(dat.glm) #glm的输出结果
估计的回归系数都是非常显著的;Null deviance可以认为是模型的残差,它的值越小说明模型拟合效果越好;模型的AIC统计量为61.68,它和deviance一起可以用来作为判断标准,选取合适的分布族和链接函数。
下面通过作图来观察模型拟合的效果,首先提取模型的预测值,注意函数predict()提取的是线性部分的拟合值,在对数连接函数下,要得到Y的拟合值,应当再做一次指数变换。以实际观测值为横坐标,模型拟合值为纵坐标作图,散点越接近直线y=x,说明模型的拟合效果越好。
> dat.pre=predict(dat.glm)
> layout(1) #取消绘图区域分割
> plot(y,exp(dat.pre),xlab='观测值',ylab='拟合值',main="索赔次数的拟合效果",pch="*")
> abline(0,1) #添加直线y=x,截距为0,斜率为1
若假设上例中的索赔次数服从负二项分布,在R中应输入指令:
> library(MASS)
> attach(dat)
> dat.glmnb=glm.nb(y~type+gender+offset(logn)) #负二项回归
> summary(dat.glmnb) #输出结果
负二项回归拟合的模型AIC为60.45,残差Null deviance为16.6831,小于泊松回归拟合的残差值,说明负二项分布的广义线性模型更加稳定,但从回归系数的显著性上看,泊松回归拟合的变量系数更加显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10