
R之回归分析广义线性模型(Generalized Linear Model)glm
1. 介绍
广义线性模型(Generalized Linear Model)是一般线性模型的推广,它使因变量的总体均值通过一个非线性连接函数而依赖于线性预测值,允许响应概率分布为指数分布族中的任何一员。许多广泛应用的统计模型都属于广义线性模型,如常用于研究二元分类响应变量的Logistic回归、Poisson回归和负二项回归模型等。一个广义线性模型包含以下三个部分:
①随机成分。
②线性成分。
③连接函数g。
各种常见的指数型分布及其主要参数
典型的连接函数及对应分布
广义线性模型的参数估计一般不能用最小二乘估计,常用加权最小二乘法或最大似然法估计,各回归系数β需用迭代方法求解。
2. 实现
R提供了拟合广义线性模型的函数glm(),其调用格式为
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
其中,
formula为拟合公式,与函数lm()中的参数formula用法相同;
family用于指定分布族,包括正态分布(gaussian)、二项分布(binomial)、泊松分布(poisson)和伪伽马分布(Gamma);
分布族还可以通过选项link来指定连接函数,默认值为family=gaussian (link=identity),二项分布默认值为family=binomial(link=logit);
data指定数据集;
offset指定线性函数的常数部分,通常反映已知信息;
control用于对待估参数的范围进行设置。
例:
车险保单索赔次数分组数据
已知索赔次数服从泊松分布,相应的连接函数常用对数连接函数,模型可以写为
下面用R实现,首先建立数据集,分类变量直接输入定性的取值即可,glm()分析时会自动转换成矩阵X,注意参数family的写法。
> dat=data.frame(
y=c(42, 37, 10, 101, 73, 14),
n=c(500, 1200, 100, 400, 500, 300),
type=rep(c('小','中','大'),2),
gender=rep(c('男','女'),each=3)
)
> dat$logn=log(dat$n) #风险暴露数取对数
#offset风险单位数事先已知
> dat.glm=glm(y~type+gender,offset=logn,data=dat,family=poisson(link=log))
> summary(dat.glm) #glm的输出结果
估计的回归系数都是非常显著的;Null deviance可以认为是模型的残差,它的值越小说明模型拟合效果越好;模型的AIC统计量为61.68,它和deviance一起可以用来作为判断标准,选取合适的分布族和链接函数。
下面通过作图来观察模型拟合的效果,首先提取模型的预测值,注意函数predict()提取的是线性部分的拟合值,在对数连接函数下,要得到Y的拟合值,应当再做一次指数变换。以实际观测值为横坐标,模型拟合值为纵坐标作图,散点越接近直线y=x,说明模型的拟合效果越好。
> dat.pre=predict(dat.glm)
> layout(1) #取消绘图区域分割
> plot(y,exp(dat.pre),xlab='观测值',ylab='拟合值',main="索赔次数的拟合效果",pch="*")
> abline(0,1) #添加直线y=x,截距为0,斜率为1
若假设上例中的索赔次数服从负二项分布,在R中应输入指令:
> library(MASS)
> attach(dat)
> dat.glmnb=glm.nb(y~type+gender+offset(logn)) #负二项回归
> summary(dat.glmnb) #输出结果
负二项回归拟合的模型AIC为60.45,残差Null deviance为16.6831,小于泊松回归拟合的残差值,说明负二项分布的广义线性模型更加稳定,但从回归系数的显著性上看,泊松回归拟合的变量系数更加显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26