京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-数据预处理
一、日期时间、字符串的处理
日期
Date: 日期类,年与日
POSIXct: 日期时间类,精确到秒,用数字表示
POSIXlt: 日期时间类,精确到秒,用列表表示
Sys.date(), date(), difftime(), ISOdate(), ISOdatetime()
#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分
# %S 秒
td=Sys.Date()
format(td,format='%B %d %Y %s')
format(td,format='%A,%a ')
format(Sys.time(), '%H %h %M %S %s')
#日期转换成数字
as.integer(Sys.Date()) #自1970年1月1号至今的天数
as.integer(as.Date('1970-1-1')) #0
as.integer(as.Date('1970-1-2')) #1
sdate=as.Date('2004-10-01')
edate=as.Date('2010-10-22')
days=edate-sdate
days #时间类型相互减,结果显示相差的天数
ws=difftime(Sys.Date(),as.Date('1956-10-12'),units='weeks') #可以指定单位
#把年月日拼成日期
(d=ISOdate(2011,10,2));class(d) #ISOdate 的结果是POSIXct
as.Date(ISOdate(2011,10,2)) #将结果转换为Date
ISOdate(2011,2,30) #不存在的日期 结果为NA
#批量转换成日期
years=c(2010,2011,2012,2013,2014,2015)
months=1
days=c(15,20,21,19,30,3)
as.Date(ISOdate(years,months,days))
#提取日期时间的一部分
p=as.POSIXlt(Sys.Date())
p=as.POSIXlt(Sys.time())
Sys.Date()
Sys.time()
p$year + 1900 #年份需要加1900
p$mon + 1 #月份需要加1
p$mday
p$hour
p$min
p$sec
#字符串
x='hello\rwold\n'
cat(x) #woldo hello遇到\r光标移到头接着打印wold覆盖了之前的hell变成woldo
print(x) #
#字符串长度
nchar(x) #字符串长度
length(x) #1 向量中元素的个数
#字符串拼接
board=paste('b',1:4,sep='-') #"b-1" "b-2" "b-3" "b-4"
board
mm=paste('mm',1:3,sep='-') #"mm-1" "mm-2" "mm-3"
mm
outer(board,mm,paste,sep=':') #向量的外积
#[,1] [,2] [,3]
#[1,] "b-1:mm-1" "b-1:mm-2" "b-1:mm-3"
#[2,] "b-2:mm-1" "b-2:mm-2" "b-2:mm-3"
#[3,] "b-3:mm-1" "b-3:mm-2" "b-3:mm-3"
#[4,] "b-4:mm-1" "b-4:mm-2" "b-4:mm-3"
#拆分提取
board
substr(board,3,3) #子串
strsplit(board,'-',fixed=T) #拆分
#修改
sub('-','.',board,fixed=T) #修改指定字符
board
mm #"mm-1" "mm-2" "mm-3"
sub('m','p',mm) #替换第一个匹配项 "pm-1" "pm-2" "pm-3"
gsub('m','p',mm) #替换全部匹配项 "pp-1" "pp-2" "pp-3"
#查找
mm=c(mm, 'mm4') #"mm-1" "mm-2" "mm-3" "mm4"
mm
grep('-',mm) #1 2 3 向量中1,2,3包含'-'
regexpr('-',mm) #匹配成功会返回位置信息,没有找到则返回-1
二、数据预处理
保证数据质量
准确性
完整性
一致性
冗余性
时效性
...
1、提取有效数据,需要业务人员配合(主观),及相关的技术手段保障
2、了解数据定义,统一对数据定义的理解
...
数据集成 : 对多数据源进行整合
数据转换 :
数据清洗 : 异常数据,缺失数据
数据约简 : 提炼,行,列

三、数据集成
通过merge对数据进行集成
#数据集成
#数据集成
#merge pylr::join (包::函数)
(customer = data.frame(Id=c(1:6),State=c(rep("北京",3),rep("上海",3))))
(ol = data.frame(Id=c(1,4,6,7),Product=c('IPhone','Vixo','mi','Note2')))
merge(customer,ol,by=('Id')) #inner join
merge(customer,ol,by=('Id'),all=T) # full join
merge(customer,ol,by=('Id'),all.x=T) # left outer join 左链接,左边数据都在
merge(customer,ol,by=('Id'),all.y=T) # right outer join 右链接,右边数据都在
#union 去重 在df1 和df2 有相同的列名称下
(df1=data.frame(id=seq(0,by=3,length=5),name=paste('Zhang',seq(0,by=3,length=5))))
(df2=data.frame(id=seq(0,by=4,length=4),name=paste('Zhang',seq(0,by=4,length=4))))
rbind(df1,df2)
merge(df1,df2,all=T) #去重,不使用by
merge(df1,df2,by=('id')) #重名的列会被更改显示
四、数据转换
构造属性
规范化(极差化、标准化)
离散化
改善分布
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12