京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-数据预处理
一、日期时间、字符串的处理
日期
Date: 日期类,年与日
POSIXct: 日期时间类,精确到秒,用数字表示
POSIXlt: 日期时间类,精确到秒,用列表表示
Sys.date(), date(), difftime(), ISOdate(), ISOdatetime()
#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分
# %S 秒
td=Sys.Date()
format(td,format='%B %d %Y %s')
format(td,format='%A,%a ')
format(Sys.time(), '%H %h %M %S %s')
#日期转换成数字
as.integer(Sys.Date()) #自1970年1月1号至今的天数
as.integer(as.Date('1970-1-1')) #0
as.integer(as.Date('1970-1-2')) #1
sdate=as.Date('2004-10-01')
edate=as.Date('2010-10-22')
days=edate-sdate
days #时间类型相互减,结果显示相差的天数
ws=difftime(Sys.Date(),as.Date('1956-10-12'),units='weeks') #可以指定单位
#把年月日拼成日期
(d=ISOdate(2011,10,2));class(d) #ISOdate 的结果是POSIXct
as.Date(ISOdate(2011,10,2)) #将结果转换为Date
ISOdate(2011,2,30) #不存在的日期 结果为NA
#批量转换成日期
years=c(2010,2011,2012,2013,2014,2015)
months=1
days=c(15,20,21,19,30,3)
as.Date(ISOdate(years,months,days))
#提取日期时间的一部分
p=as.POSIXlt(Sys.Date())
p=as.POSIXlt(Sys.time())
Sys.Date()
Sys.time()
p$year + 1900 #年份需要加1900
p$mon + 1 #月份需要加1
p$mday
p$hour
p$min
p$sec
#字符串
x='hello\rwold\n'
cat(x) #woldo hello遇到\r光标移到头接着打印wold覆盖了之前的hell变成woldo
print(x) #
#字符串长度
nchar(x) #字符串长度
length(x) #1 向量中元素的个数
#字符串拼接
board=paste('b',1:4,sep='-') #"b-1" "b-2" "b-3" "b-4"
board
mm=paste('mm',1:3,sep='-') #"mm-1" "mm-2" "mm-3"
mm
outer(board,mm,paste,sep=':') #向量的外积
#[,1] [,2] [,3]
#[1,] "b-1:mm-1" "b-1:mm-2" "b-1:mm-3"
#[2,] "b-2:mm-1" "b-2:mm-2" "b-2:mm-3"
#[3,] "b-3:mm-1" "b-3:mm-2" "b-3:mm-3"
#[4,] "b-4:mm-1" "b-4:mm-2" "b-4:mm-3"
#拆分提取
board
substr(board,3,3) #子串
strsplit(board,'-',fixed=T) #拆分
#修改
sub('-','.',board,fixed=T) #修改指定字符
board
mm #"mm-1" "mm-2" "mm-3"
sub('m','p',mm) #替换第一个匹配项 "pm-1" "pm-2" "pm-3"
gsub('m','p',mm) #替换全部匹配项 "pp-1" "pp-2" "pp-3"
#查找
mm=c(mm, 'mm4') #"mm-1" "mm-2" "mm-3" "mm4"
mm
grep('-',mm) #1 2 3 向量中1,2,3包含'-'
regexpr('-',mm) #匹配成功会返回位置信息,没有找到则返回-1
二、数据预处理
保证数据质量
准确性
完整性
一致性
冗余性
时效性
...
1、提取有效数据,需要业务人员配合(主观),及相关的技术手段保障
2、了解数据定义,统一对数据定义的理解
...
数据集成 : 对多数据源进行整合
数据转换 :
数据清洗 : 异常数据,缺失数据
数据约简 : 提炼,行,列

三、数据集成
通过merge对数据进行集成
#数据集成
#数据集成
#merge pylr::join (包::函数)
(customer = data.frame(Id=c(1:6),State=c(rep("北京",3),rep("上海",3))))
(ol = data.frame(Id=c(1,4,6,7),Product=c('IPhone','Vixo','mi','Note2')))
merge(customer,ol,by=('Id')) #inner join
merge(customer,ol,by=('Id'),all=T) # full join
merge(customer,ol,by=('Id'),all.x=T) # left outer join 左链接,左边数据都在
merge(customer,ol,by=('Id'),all.y=T) # right outer join 右链接,右边数据都在
#union 去重 在df1 和df2 有相同的列名称下
(df1=data.frame(id=seq(0,by=3,length=5),name=paste('Zhang',seq(0,by=3,length=5))))
(df2=data.frame(id=seq(0,by=4,length=4),name=paste('Zhang',seq(0,by=4,length=4))))
rbind(df1,df2)
merge(df1,df2,all=T) #去重,不使用by
merge(df1,df2,by=('id')) #重名的列会被更改显示
四、数据转换
构造属性
规范化(极差化、标准化)
离散化
改善分布
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27