
汽车大数据将彻底颠覆汽车产业
国家在“十三五”期间推进的供给侧改革,将给汽车行业带来很大影响,其中最突出的表现就是汽车市场需求的变化,这就要求汽车行业、企业提供更适应市场需求的产品。
大数据在互联网、金融、交通等领域的成功应用,在带来巨大利益的同时也加快这些行业的变革升级。就汽车产业而言,我国新车销售规模连续八年蝉联全球第一,但同时面临成本上升、行业竞争加剧、政策法规趋严等一系列问题。而大数据的蓬勃发展,为汽车行业带来新的机遇,是推动汽车产业由大变强的重要因素。
汽车大数据是一个巨大的战略宝库。汽车不仅是运输工具,还是大数据的发生器和承载器,大数据在提升汽车产业的生产制造水平、改变汽车经营业务模式、改善消费者体验、推动智慧社会发展、建设汽车强国中将发挥巨大且重要的作用。
现阶段大数据正在多个业务环节推动着汽车产业进一步升级:首先,在汽车产品研发环节,大数据助力提升产品研发品质。其次,在营销环节,大数据助力汽车精准营销。第三,在使用环节,借助大数据能够准确掌握车辆位置、车辆故障、驾驶行为等信息,结合具体使用场景和互联网技术,支撑智能导航、车辆故障预警等领域拓展创新,推动建立便捷用车、经济用车、安全用车的社会用车新局面。第四,在后市场环节,以车辆识别代号为核心,以零部件编码、材料编码为主要纽带的大数据体系,使得整车与零部件信息的精确匹配成为可能,为汽车后市场的繁荣发展奠定了基础。
如今汽车产业面临成本上升、行业竞争加剧、政策法规趋严以及科技带来市场变化的多重压力。充分整合挖掘数据的价值有助于整个汽车产业调整未来的发展方向,让汽车产品变得更加环保、智能、个性化。打造在大数据领域的竞争优势,为汽车业转型升级带来新的机遇,有助于推动我国汽车产业以及经济建设的发展。
汽车业对于大数据的收集、分析和整合仍处于探索阶段,应着眼于汽车行业的长远发展,推动汽车业大数据开发共享,惠及民众;明确汽车大数据产业的发展方向,加快开发与利用,加强合作,共促汽车业和其他产业的融合发展。
谁拥有大数据谁就拥有了未来,汽车产业也不例外。汽车业大数据发展前景可期,未来,汽车将成为大数据的重要输出源,信息通信技术、新能源、新材料等与汽车产业加快融合。未来的汽车产品,将从单纯的交通工具变成大型的移动智能终端,数据非常富有挖掘价值。汽车服务业、互联网与汽车将进一步深度融合,将使便捷出行、安全驾乘、娱乐休闲等需求充分释放,消费需求的多元化将日趋明显。
随着互联网、大数据、云计算、人工智能、3D打印等技术进入汽车领域,汽车产业进入全面变革的特殊时期。能源、环境、交通拥堵、安全四大挑战倒逼汽车产业做出能源、互联、智能三大革命性变革,进而带来汽车产业的六个巨大改变:从人驾驶车转变为自动驾驶,从拥有使用转变为共享使用,从耗能机械转变为移动能源,从移动工具转变为交通服务,从信息孤岛转变为智能终端,从汽车制造转变为汽车智造。产业运转进入全新时代,汽车文明重新定义。
延伸至产业链条的各环节,智能网联汽车价值链将实现各环节的价值体量提升,从设计研发到采购、制造、销售、后市场,再到流通使用,所有的环节都在发生改变。所有的改变都与数据有关,既需要数据指导又产生新的数据,在制造以前是工业大数据,需要有科学性,在制造以后是一般的非结构性大数据,两者既相连又独立,共同形成汽车产业大数据。随着数据本身有效的挖掘,汽车产业大数据逐渐生成新的衍生品——汽车大数据产业。
大数据对汽车业极具挑战和颠覆性,大数据将让制造企业真正变成数据服务企业。现在一些车企和数据服务商已经意识到,未来,汽车产品将不再是车企的主要盈利点,其所搭载的服务以及用户的数据信息才是未来汽车生态链中的焦点。
在汽车大数据产业时代,以数据驱动的互联、互动为核心的智能制造体系即工业4.0,将覆盖汽车生产制造全领域,厂商将从集中式生产转变为分散式生产,从只有产品转变为“产品+数据”,从生产驱动价值转变为数据驱动价值,产业结构发生重大转移。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28