
你真的会玩SQL吗?EXISTS和IN之间的区别
EXISTS和IN之间的区别
1.EXISTS只返回TRUE或FALSE,不会返回UNKNOWN。
2.IN当遇到包含NULL的情况,那么就会返回UNKNOWN。
当查询的列包含NULL时,NOT EXISTS正常返回TRUE或FALSE。
而NOT IN可能返回空集,如下
1:val IN(val1,val2,...,NULL),永远不会返回FALSE,而是返回TRUE或UNKNOWN。
2:val NOT IN(val1,val2,...,NULL),永远不会返回TRUE,而是返回NOT TRUE或NOT UNKNOWN。
看个示例:
Test1表
select t.[name] from Test as t
where exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 aaa,ccc,ddd
select t.[name] from Test as t
where t.[name] in (select t1.[] from Test1 as t1)
返回 aaa,ccc,ddd
select t.[name] from Test as t
where not exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 bbb
select t.[name] from Test as t
where t.[name] not in (select t1.[name] from Test1 as t1)
返回空集
练习
以下对就返回哪三值?
答案
View Code
用例数据库文件 你真的会玩SQL吗?之逻辑查询处理阶段 文末
/*写一条查询语句,返回在2007年下过订单,而在2008年没有下过订单的客户。
涉及的表:Sales.Customers表和Sales.Orders表。用exists
期望的输出:*/
custid companyname
----------- ----------------------------------------
21 Customer KIDPX
23 Customer WVFAF
33 Customer FVXPQ
36 Customer LVJSO
43 Customer UISOJ
51 Customer PVDZC
85 Customer ENQZT
参考SQL:
--answer:
select custid, companyname
from Sales.Customers as C
where EXISTS
(select *
from Sales.Orders as O
where O.custid = C.custid
and O.orderdate >= '20070101'
and O.orderdate < '20080101')
and not EXISTS
(select *
from Sales.Orders as O
where O.custid = C.custid
and O.orderdate >= '20080101'
and O.orderdate < '20090101');
/*
1.先处理外层查询,从Sales.Customers表别名C中取出一个元组,将元组相关列值custid传给内层查询
2.执行第一层内层查询,Sales.Orders表别名O,应用where子句返回满足条件O.custid = C.custid和orderdate在2007年至2008年
3.执行第二层内层查询,Sales.Orders表别名O应用where子句返回满足条件O.custid = C.custid和orderdate在2008年至2009年的值
4.执行not EXISTS,外查询根据子查询返回的结果集得到满足条件的行
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13