
大步跨入“大数据”时代
发微博、写博客、浏览网页、拨打电话、看病、坐火车……这些都是我们生活中常做的事。然而,似乎很少有人注意到这些行为会留下“痕迹”。事实上,在与互联网、政府、信息系统等的交互中,我们创造了成千上万、甚至上亿的数据,日积月累,这个数量越来越庞大,庞大到传统的数据库和基础架构根本无法及时处理、管理和分析这些数据集,于是,“大数据”应运而生。
近年来,“大数据(Big Data)”一词快速升温,成为了IT行业争相传诵的热门话题。最早提出“大数据”时代已经到来的麦肯锡公司指出:数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素,而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。当前,国内大数据正处于快速起步阶段。大数据的到来,将会带动包括基础架构、软件以及相关服务整个信息产业链的变革。大数据时代,数据承载事实、承载民意,在公民表达、监督方面,在政府政策的制定、实行方面,在企业的盈利创新方面,甚至在公共对话方面,都将产生深远影响,届时,尊重数据、使用数据、公开数据将成为一种行为方式。
何为“大数据”?
2012年6月,美国《国家科学院院刊》刊登了美国科学院院士迈克·古德柴尔德和中国科学院院士郭华东等共同撰写的《新一代数字地球》一文,指出人类将进入“大数据”时代。随着互联网技术的不断发展,移动互联网、物联网、电子商务等应用更加普及,带来了数据源种类和数据量的持续快速增加,大数据现象已经出现。
数据本身是一种资产,大数据是有价值的,这点在业界已形成共识,但“大数据”在业内并没有统一的定义。由于大数据分析常和云计算联系到一起,有人把大数据等同于云计算,也有人在大数据是种技术还是种现象之间纠结。关于大数据和云计算间的关系,麦肯锡是这样描述的:“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
综合取舍各方意见,互联网数据中心(IDC)为“大数据”下了定义,得到了业内的普遍认可,即“大数据”是指为了更经济更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。如此海量的数据造就了大数据的“4V”—— Volume,Variety,Value,Velocity,即数据体量巨大,从TB级别跃升到PB级别;数据类型繁多,网络日志、视频、图片、地理位置信息等都能成为数据;价值密度低,以视频为例,长时间连续不间断监控过程中,可能有用的数据仅仅有一两秒;处理速度快,遵循1秒定律。上述“4V”,造就了独一无二的“大数据”。
“大数据”将带来什么?
有数据显示,目前全球有46亿移动电话用户,每天有20亿人访问互联网,人们与数据的交互比以往任何时候都密切。据全球领先的互联网解决方案供应商思科公司预测,到2013年,在互联网上流动的交通量将达到每年667艾字节(EB)。目前,大数据所形成的市场规模在51亿美元左右,而到2017年,此数据将上涨到530亿美元。
大数据时代,网民和消费者的界限正在消弭,企业的疆界变得模糊,数据共享成为政府的一种常态化责任。数据成为企业的核心资产,并将深刻影响企业的业务模式,甚至重构其文化和组织。顺“大数据”者昌,逆“大数据”者亡。索尼前总裁出井深之曾一针见血地指出:新一代基于互联网DNA企业的核心能力在于利用新模式和新技术更加贴近消费者、深刻理解需求、高效分析信息并做出预判,所有传统的产品公司都只能沦为这种新型用户平台级公司的附庸,其衰落不是管理能扭转的。
在大数据概念提出之前,互联网企业沿着固有的脉搏一路繁荣,人们利用互联网进行沟通、娱乐和消费,传统企业一直忙于供、研、产、销,两者基本上平行发展、鲜有交集。大数据使两者产生交集,为互联网嫁接了“供应链”,为传统企业嫁接“互联网基因”,引发消费模式、制造模式、管理模式的巨大变革。可以说,大数据帮助人们开启循“数”管理的模式,“得数据者得天下”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01