京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据征信六大难题待解
随着消费金融、网络借贷等互联网消费模式快速增长,以及大数据技术突飞猛进,大数据征信服务机构开始大量涌现。但多元化、多层次征信市场体系建设面临一系列挑战,有很多难题尚未破解。
一是数据的质量、共识性问题。相比于央行征信系统的共识性、数据质量的高可靠性,大数据征信机构虽然数据来源更加宽泛、品种更加丰富,但数据质量、共识性受到质疑。美国国家消费者法律中心2014年3月对主要的大数据征信公司进行调查后并发表了题为《大数据,个人信用评分的大失望》的调查报告,报告称,大数据征信公司的信息错误率高于50%。这些公司的数据模型繁多又复杂,使用不准确的数据,有“垃圾进,垃圾出”之嫌。
二是同人不同信用问题。决定大数据模型预测准确性的两个关键因素是数据和算法,各家征信机构的基因不同,数据来源不同。目前八家机构中,鹏远、中诚信、中智诚是传统型的征信机构,数据来源主要是金融数据、公共数据为主,而芝麻、腾讯、前海、考拉、华道则除了接入传统数据外,主要大量用的是自身场景下积累的数据,这导致信用评估结果在不同公司间存在差异。
三是个人隐私保护及信息安全问题。根据《征信业管理条例》规定,采集和应用个人征信信息必须要获得征信主体授权,商业银行在向人民银行征信中心报送和查询使用个人征信信息时,必须严格执行此规定,对于报送数据范围、查询用途范围、授权形式、异议处理等都有明确的界定。而大数据征信依赖大量个人的互联网交易记录、社交网络数据,在多重交易和多方接入的情况下,隐私保护的权利边界被淡化,隐私泄露风险被迅速放大,公民维护自己合法权益面临取证难、诉讼难等问题。
四是公共信息的可获取、跨机构信息的可交换问题。如前分析,目前多家个人征信试点机构的信息来源带有浓厚的自身经营特点,申请个人征信试点机构大多首先拥有自己的具有垄断性的数据资源。而大数据征信要求的是信息的共享,而不是局部的垄断和壁垒。跨机构拥有的信息是否可交换,哪些需要获得信息主体的授权,如何保证交换过程和交换后信息不被滥用,在法律、监管、技术等方面都缺乏标准。同时,工商、税务、司法等公共政务信息的可持续获取,尚得不到保证。目前的主要做法是,各家征信机构或信息使用机构分散地获取这类信息,获取成本高,数据质量和数据的可持续维护得不到保证。
五是信息滥用带来的社会安全、公平交易问题。从首批试点的八家个人征信机构的运营情况看,市场开放之后,芝麻信用、腾讯征信、考拉征信等机构开始了一轮激烈的追逐赛,纷纷推出各自的评分产品,并争相在金融、购物、招聘、租车、租房、交友、酒店入住等领域尝试应用。但是,这些机构绘制出的人物“肖像”能否真实反映个人信用还令人质疑,获取信息所采用的关键技术的可靠性还有待进一步检验,没有制约的商业化应用很可能带来安全隐忧或消费歧视。
六是征信机构的独立性问题。从各国征信机构的发展历程看,狭义的征信主要是为放贷机构的风险管理提供信息支持的活动,遵循“信息采集者与信息产生没有任何关系”的独立第三方原则。而目前试点的几家征信机构多不是独立的第三方,一方面他们的数据来源于母公司,另一方面其兄弟公司又涉足放贷业务。评分结果对于其各自经营领域的客户分析、风险判断具有强相关性,但其他应用场景下评分结果的相关性则有待验证。
总之,围绕建立多元化的征信体系这一大目标,需要在健全信用管理法律法规,完善信用数据标准体系,加快各类公共信用信息基础平台建设,强化征信业监管等方面多方探索,既要大力推进,又要脚踏实地,不能指望一蹴而就。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04