京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在的大数据风控还只是个宝宝
现在搞金融行业,开口闭口不谈大数据,简直就像是出门没穿衣服一样丢人。老猫虽然碍于情面,有时也不免对大数据高谈阔论,不过静下心来,却还是觉得现在的大数据风控有诸多不足之处,套用网络俗语来看,还只是个宝宝。
1、 我们没有经历过一个完整的信贷周期
美国的征信行业从创始至今已经走过了超过100年的时间,涉及到资本市场信用机构有Standard and Poor’s(标准普尔)、Moody’s(穆迪)、Fitch(惠誉),普通企业信用机构有Dun&Bradstreet(邓白氏),个人征信方面则有Experian(益博睿)、Equifax(艾可菲)、Trans Union(全联)。可以看出美国的征信机构业务集中且覆盖市场的方方面面,其中的数据更是长达了几代人的时间,经历过数次遍及全球的金融危机,这样的数据是经得起市场和时间的检验的,个人信用记录涉及到的每个人美国人生活的方方面面。
而中国人民银行的个人信用信息基础数据库建设最早始于1999年,2005年8月底才完成与联网运行,算到2017年,可能其中大部分人连商品房的房贷都没有还完,更不必说小额消费贷款这样最近几年伴随着网购才在中国发展起来的新生事物,不少新近成立的消费金融公司的种子客户都还在第一轮的还款当中。而且个人征信还远未到影响到我们生活的地步,很多人对此不重视也造成了信用记录的缺失。在数据本身都存疑的情况下,与之相匹配的评分标准、贷款额度、逾期率等都没有经过检验,这是目前大数据风控所被人诟病的最主要的方面。
不要忘了中国到目前为止始终处于一个上升的经济周期内,倘若未来处于经济下行阶段,目前积累的数据和模型还是否有效,是一个很大的未知数。
2、 积累的样本离“大”数据还差的很远
我们老说大数据大数据,但对于什么样的数据可以称之为“大”,恐怕很少有人能得出概念。一个经营的很好的P2P平台有着几万到几十万用户的投资数据,而一些搞征信企业拥有百万级的用户数据就可以称自己是“大数据”了,即使是央行,也仅仅拥有3.8亿人的信贷记录。
这样的数据规模,应用到拥有十三亿人国家的市场中,可以说远远的不够。中国的贫富差距之大,地区和地区间发展的极不均衡,让单一的数据模型很难适用于每个消费群体。而且不少企业都把自己积累的消费数据作为企业的“秘密”,生怕竞争对手获取到这些信息,这更加剧了信息之间的不流通,使得数据样本与实际产生偏差,恶意套现的组织也利用这一漏洞,用同样的资料在不同平台之间进行套现。现在许多消费金融公司组建起了生态联盟,在联盟内共享黑名单,就是希望依靠联盟来扩充数据容量以增强数据的准确性。
老猫甚至有一个“狭隘”的观点,我认为只有基本覆盖到每个公民的数据才称得上是“大数据”。在存在一定边界条件控制的情况下,比如春运、集会这样的指向性很强的活动中,有着一定量的数据就可以得出可信的趋势。而在信用贷款中,每个个体都存在着不可控的因素,这些因素的来源是方方面面的,是否仅仅依靠大数据就可以推算出来,我个人是表示存疑的。
3、 人为操作可以让大数据形同虚设
我们看到了美国征信行业的生机勃勃,但经常被我们忽视的是,美国同时拥有着一整套与之匹配的法律体系和监管机制,包括《公平信用报告法》在内共有17部法律,在信息的收集、使用、发布、准确性上有着详尽的规定,支撑着美国整个征信行业的规范性发展。
这些法律,让美国的征信数据是公开公平,真实可信的。而我国关于征信方面主要的法规是2013年1月国务院颁布的《征信管理条例》,单从“条例”一词就可以看出,我国在征信方面还未上升到国家法律的层面。并且我国采用的是政府征信与企业征信的双轨制结构,双方在数据类型、数据库上并不完全互通,这就导致了数据的不一致,存在人为进行篡改的可能性。还有关于个人隐私方面的问题,《征信管理条例》也有许多语焉不详之处,在实践过程中有可能出现个人隐私暴露的问题。
从前段时间电影票房的虚假繁荣,到电商平台上可以说是习以为常的刷单现象。连吃瓜群众都可以看到大数据经常反映不了真实的情况,有问题的数据应用到风控中,还会造成更多的隐患。限于金融自身的周期规律,这些隐患造成的后果不会像电影票房那样立刻显现,但很有可能在将来集中爆发。
不仅是数据本身,如何运用数据也是左右风控的关键因素。在缺乏法律监管的情况下,许多平台人为的降低风控要求,从而增大了风险敞口,造成了有“大数据”而无“风控”的情况,从近段时间大批平台因经营不善纷纷“暴雷”来看,大数据风控的核心还是在于人,只有监管者从严监管,从业者合规经营,大数据风控才能真正“长大成人”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04